HOJDPUNKTEN 2024

Losningsforslag oppen tavling

Skrivtid: 3 timmar
Hjalpmedel: endast penna, sudd, passare och linjal
Motivera alla 16sningar. Enbart svar ger inga péang om inte annat anges.

Problem 1. Lat n vara ett positivit heltal. Visa att det finns en f6ljd {ag, a1, as, ..., a,} av heltal
storre dn 1 sadana att
ap! - ar!-as!---an_1! = a,l.

Lo6sningsforslag. Vi anvander induktion. Basfall: Om n = 1 sa l6ses ekvationen trivialt genom
att sitta ag = a1. Anta nu att ag! - aq!---an_1! = a,!. For att skapa en liknande produkt med en
till faktor, skriv

(an)'=an! (ap! = D! =ag! - a1l an—1!(a,! — 1)!

Denna metod later oss induktivt skapa produkter med godtyckligt manga faktorer. O

Kommentar: Fokulteter kanns valdigt kombinatoriska, sa en rimlig fraga dr om det finns nagon
trevlig kombinatorisk tolkning av problemet. Losningen ovan dr sa enkel att vi formodligen inte bér
hoppas pa nagot mer koncist, men det ar alltid trevligt nar det finns flera sdtt att l6sa ett problem.
Och faktiskt, det finns en smart metod att géra detta utan att skriva ner ndstan nagra ekvationer!

Forst observera att ett naturligt tal ar en fakultet om och endast om det dr antalet sdtt att ordna
elementen i en dndlig mdangd S. Nu lat

e Sy vara mdangden 1,2,3,...;a
e Ski1 vara mdngden av permutationer av elementen i Sy,

Uppenbarligen dr storleken pa Ski1 en fakultet, enligt observationen ovan. Men det dr ocksa lika
med antalet sdtt att valja det forsta elementet fran Sy, vilket dr exakt |Sg|, gdnger antalet sdtt
att permutera de resterande elementen i Sy, vilket ocksa dr en fakultet enligt observationen ovan.
Genom induktion far vi att |Sg| dr en produkt av k fakulteter, och sdaledes dr |Sk+1| en produkt av
k + 1 fakulteter. Ddrmed dr vi klara!



Problem 2. En andlig médngd med positiva heltal {kq, ko, ..., k,} &r given. Visa att det finns ett
positivt heltal m sa att talen mky, mks, ..., mk, alla har olika antal delare.

Losningsforslag (1). Enligt aritmetikens fundamentalteorem kan vi hitta ett heltal r och en matris

A e N g3 att k; = pf""poA"’Q . -pf” for varje ¢ € {1,...,n}. Om primtalsfaktoriseringen av m

ar pi' ph? - pkr ar antalet delare av mk; da

T

d(mki) = [ [ (s + Aij +1).
j=1

Hur kan vi gora alla dessa produkter olika? Lat oss konstruera pq, ..., sa att d(mk;) ar delbart

med en unik uppséttning primtal for varje i. Lat Ap.x vara det storsta elementet i A, och lat

B € N™ 7 vara en matris av parvis olika primtal som alla &r storre &n A, + 1. Enligt den kinesiska

restsatsen kan vi vilja pi,..., u, sa att for alla i € {1,...,n} och j1,j2 € {1,...,r},
pj, = —1—= A j, (mod Bij) om ji = ja, )
Wi, = 0 (HlOd Bi,jl) om jl # jg.

Vi hdvdar att detta gor att mky, mks, ..., mk, har olika antal delare som 6nskat. Betrakta tva
godtyckliga k;, och k;, dar iy # is. Eftersom k;, och k;, har olika primtalsfaktoriseringar maste det
finnas ett tal j; sa att A;, j, # A,, ;,. Fran (1) far vi att

i Aij, +1 =0 (mod B; j,)
- Bihjl |d(mk’tl)

Vi visar nu att B;, ;, t d(mk;,) genom att visa att B;, j, inte delar u;, + A;, ;, + 1 for nagot j». Om
J2 # ji, far vi
fj + Aig jy + 1= Aiy j, +1 - (mod Bj, 5, ),

vilket, eftersom A;, j, +1 < Apax +1 < B;, j,, innebér att
Bihj1 'f:u‘]é + Ai27j2 + 1.

Detta lamnar en sista faktor av d(mk;,) att kontrollera, ndmligen 11, +A;, ;, +1. For detta tillimpar
vi forsta fallet av (1) och far
fjy + Aiy gy 1= Aiy gy = Aiy iy

vilket som tidigare inte kan vara delbart med B;, j,, eftersom A;, j, — A;, j, ar nollskilt och har en
magnitud som inte ar storre &n A ax O

Loésningsforslag (2). Vi kan ocksa visa detta med induktion pa n. Detta &r var plan:
Basfall: For n = 1 finns det inget att visa.

Induktionssteg: Anta att vi har 16st problemet for n—1, det vill sdga att vi kan vélja ett tal ¢ sa att ckq, ..., ck,_1
har olika antal delare. Var plan hérifran ar att vilja ett primtal p (vi kommer att bestdmma
vilket senare), och multiplicera ki, ...,k, med p®c for nagot icke-negativt heltal a. Nedan
kommer vi att visa att det alltid finns ett val av p och « for vilka p®ckq, ..., p®ck, har parvis
olika antal delare, vilket avslutar induktionen.

Innan vi bevisar induktionssteget, lat oss introducera viss notation. Anta att vi redan har valt vart
primtal p.

e Lat d; beteckna antalet delare av ck;, for i = 1,2, ..., n.

e Lat a; — 1 beteckna antalet ganger som ck; ar delbart med primtalet p (s a; &r en mer &n
antalet ganger p delar ck;. Vi gor detta underliga val for att forenkla algebran senare).

Det &ar latt att visa att antalet delare av ett tal med primtalsfaktorisering ¢;* - ... - qBm dr exakt
(B14+1) ... (Bm + 1) (detta beror pa att det finns §; + 1 sdtt att vélja antalet ganger som g;
forekommer i faktoriseringen av vart delare). Darfor, eftersom antalet ganger som p delar p®ck; ar
a4+ a; — 1, far vi:

antal delare av p“ck; = d; o+ a

Q;



Antag att det finns nagra i # j sadana att

dia—i—ai :dja+aj
Q5 Q
=  dila+a)a; =dj(a+aj)oy

< a(diaj — djOéi) = aiaj(dj — dl)

Om d;a; — djay # 0, finns det exakt ett (rationellt) o for vilket detta &r sant. Om d;a; — djo; = 0,
ar vansterledet alltid 0 oavsett vart val av o, och det kan darfor endast vara sant om d; = d;. Vi
kan alltsa dra slutsatsen att for varje par ¢ # j, antingen:

o dio; — djoy; # 0 och det finns exakt en o som vi maste undvika, eller
o dioj —djo; =0 och d; # dj, i vilket fall vilket o som helst fungerar, eller
o dioj —djo; =0 och d; = dj, i vilket fall det inte finns nagot « som &r tillréckligt bra.

Eftersom vi alltid kan undvika dndligt manga val av «, ar det enda vi maste se till att det inte finns
nagot i # j for vilket vi hamnar i det tredje fallet. Enligt induktion vet vi redan att d; # d; for
1,7 < n — 1. Detta innebér ocksa att det hogst finns ett i sadant att d, = d;, och for att avsluta
maste vi bara valja p sa att d;a,, — dp; # 0 for det ena i. Men vi vet att d; = d,, sa detta &ar
ekvivalent med att vélja ett p sadant att a; # «,. Ett sadant p finns alltid enligt vart antagande
om att ky # k,,. Beviset ar saledes fardigt. O



Problem 3.

(a) Tilda har en rektangulér brida som &r 1 dm lang och 16/9 dm bred. Visa att hon kan saga
isar den i tva delar som kan séttas ihop till en kvadrat.

(b) Hitta ofindligt manga tal x sadana att en 1 dm ganger x dm bréda kan sagas isér i tva delar
som kan séttas ihop till en kvadrat.

Losningsforslag. Del (a): Den kan sedan byggas om till en kvadrat enligt figuren nedan:

/’\

Del (b): Fran en kvadrat kan man skapa en rektangel med féljande metod:
1. Dela upp kvadraten i ett n x (n + 1) rutnét.
2. Rita en trappa langs rutnitet som delar upp kvadraten i tva lika stora delar.
3. Flytta ner den Oversta delen ett trappsteg.

Den resulterande rektangeln bestar da av ett nx (n+1) rutnét av nx (n+1) rutor. Dessa férhallandet

mellan dess sidor blir dirmed (n + 1)? : n2. Om vi siitter z = (n%)z for nagot heltal n sa kan vi
utféra samma process baklanges och pa sa vis transformera en 1 x x rektangel till en ”TH X ”T—ng
kvadrat. For foljande virden pa z ar alltsa mojliga:
49 16 25 (n+1)
174797167 n2 777
O



Problem 4. Ett polynom kallas inversigt om for alla rotter a sa &r 1/a ocksa en rot. Lat f vara
ett irreducibelt rationellt polynom av grad > 2. Antag att f har en rot b € C med |b| = 1. Visa att
f ar inversig och har jamn grad.

Losningsforslag (1). Lat f(xz) = ag + a1z + -+ - + a,a™. Forst pastar vi att f inte har nagra
dubbelrétter. Detta &r en sats om irreducibla polynom som kan bevisas pa foljande séatt: Lat a vara
en rot till f med multiplicitet Atminstone 2. D& kan f skrivas som f(z) = (x — a)?q(z) for nagot
rationellt polynom ¢. DA har vi att derivatan f’(z) = 2(z — a)q(z) + (z — a)?¢/(x) ocksa har a som
rot. Sa den storsta gemensamma delaren ged(f, f/) har grad minst 1, men da f &r irreducibel maste
den vara lika med f. Det dr dock omojligt for f att vara en delare till f/ da den senare har lagre
grad.

Nu betraktar vi det rationella polynomet g(z) = " f(1/z). Om o &r en rot till f sa ir X en rot
till g. Eftersom f och g har samma grad, och f inte har nagra dubbelrétter, sa ar rotterna till g
exakt de multiplikativa inverserna till rotterna av f.

Betrakta nu talet b. Notera att b inte kan vara 1 eller —1, da f annars hade haft grad 1. Alltsa
ar b icke-reellt, och eftersom f har rationella koefficienter maste dven b = % vara en rot till f. Vi
har alltsa att b och % ar rotter till bade f och g. Men da maste den storsta gemensamma delaren
ged(f, g) ha grad minst 2, och dérfor vara lika med f. Da f och g har samma grad maste vi ha
f =g, sa att f ar inversigt. Att f har jaimn grad foljer av att det inte har nagra dubbelrétter och
inte har rotter 1 eller —1, sa att man kan para ihop varje rot av f till sin multiplikativa invers. [

Losningsforslag (2 (Galoisteori)). Vi visar att f inte har dubbelrdtter och att § &r en rot till f
pa samma sétt som i 16sningsforslag 1. Vi anvénder féljande lemma fran galoisteori.

Lemma 1. Om « och 3 dr rétter till samma irreducibla polynom éver Q, sa finns det en funktion
¢ :C — C sa att, for alla a,b € C och for alla q € Q:

* pla) =7
® p(a+b)=¢p(a)+p(b).
p(ab) = p(a)p(b).

o © ar bijektiv.

* o(q) = ¢
Med andra ord sa dr ¢ en Q-bevarande automorfism av C som skickar o till B.

Lat a vara en rot till f som inte &r b eller 1/b. Vi vill visa att 1/a &ven &r en rot till f. Vi
anvander lemma 1 for att hitta:

e ¢: en Q-bevarande automorfism av C som skickar a till b.
e ¢: en Q-bevarande automorfism av C som skickar b till %.

Vi pastar att h(a) := ¢~ oo p(a) = 1. Vi beréiknar

a(p™ ovop)(a) =1 <= pa(p  orpop)(a) = (1) =1
= p(a)i(p(a)) =1

1
— b -=1
b

Notera nu att h ar en Q-bevarande automorfism av C. Vi har alltsa att

sa att é ocksa &r en rot av f. Vi har alltsa att f ar inversigt. Att f har jamn grad visas pa samma
satt som i 16sningsforslag 1.

O



Problem 5. Ung Vetenskapssport har vixt! Vi &r nu manga som &r engagerade och vill ha tillgang
till alla UVS olika kanaler for att na ut till vara fantastiska medlemmar. Men ju fler som far tillgang,
desto storre blir sikerhetsrisken; vad hander om nagon far sitt konto hackat? Vi behéver nu er hjéalp
for att 16sa detta problem!

Det &r n personer som vill ha tillgang till UVS konton. Vi vill hitta pa ett system som garanterar
att om 1 < m < n personer tillsammans vill logga in sa kan de gora det, men om m — 1 personer
vill logga in sa har det inte nog med information for att gora det.

Efter langa diskussioner kom vi fram till foljande forslag. Vi valjer ett 16senord med M siffror
T1%2...x 7, och avsléjar sedan nagon delméngd av dessa siffror for varje person som vill ha tillgang
till vara konton.

(a) Ar det méjligt att dela ut siffrorna sa att kravet ovan &r uppfyllt?
(b) Om svaret &r ja, vilket ar det minsta M for vilket det ar mojligt (uttryckt i n och m)?
Losningsforslag.

(a) Ja. Skapa ett losenord med (") = (,_» ;) siffror och visa en siffra for varje mangd av
n —m + 1 personer. Om m — 1 personer traffas sa kommer de sakna siffran som resterande
n —m + 1 personer kdnner till. Men om m personer traffas sa& kommer atminstone en person

fran varje méangd av n — m + 1 personer vara med i traffen.

(b) Vi pastar att konstruktionen ovan &r optimal. Anta darfor att 1senordet bestar av farre an
(mﬁl) siffror och att varje méangd av m — 1 personer har en siffra som de inte kanner till. Det
finns da (enligt ladprincipen) tva olika méngder av m — 1 personer som saknar samma siffra.
Unionen av dessa tva méngder (som tillsammas har minst m personer) saknar alltsa ocksa en
siffra. Detta bevisar att 16senordet maste ha atminstone (mn—l) siffror.

O

Kommentar. En naturlig fraga dr vad som hdnder om vi har mer komplicerade krav dn "vilken
m personer som helst bor tillatas att ga in, men inte m — 1 personer”. Vad hdnder om till exempel
styrelsen ska ha speciella befogenheter som tillater dem att ga in dven om endast tva av dem dr
ndarvarande, men om ingen styrelsemedlem dr ndrvarande krdver vi atminstone tio personer for att
vara narvarande? Lésningen ovan hanterar sadana fragor ganska bra ocksa.
Sdg att vi har en lista S1,Ss,...,S, C 1,2,...,n av grupper av personer som ska tillatas att ga in
(dar vi numrerar de personer som vill ha tillgang som 1,2,...,n), och anta att varje delméangd av
1,2,...,n som inte finns med i listan inte ska fa tilltrdde. Da dr ett uppenbart krav for att det ska
finnas en ldsning pd vdrt problem att S; C B = B = §; for ndgot j (eller ekvivalent: om en
mangd B inte finns med i listan, kan ingen delmdngd av B heller finnas med i listan). Men detta
ar faktiskt tillrackligt! Om listan éver mdangder som inte finns med i listan ar Ry, ..., Ry, sa kan vi
vdlja en siffra for varje mingd 1,...,n\ R; och ge den endast till dessa personer. ...



Problem 6. Lat AABC vara en triangel sidan att |AB| < |AC|. Lat B’ vara punkten pa sidan
AC sadan att |AB| = |AB’|. Lat D vara en punkt sadan att |AB| = |AD|, skild fran B och B’
Den omskrivna cirkeln till AB’C'D skér linjen BC' en andra gang i punkten FE, skild fran C. Bevisa
att det existerar en fixpunkt K oberoende av D, sadan att linjen DE gar genom K for alla mojliga
val av punkten D.

Loésningsforslag. Lat w beteckna cirkeln med medelpunkt A och som innehéller B, B’ och D. Lat
M vara projektionen av B’ pa BC och lat K vara (den andra) skdrningspunkten av w och B'M.
Lat dven L vara (den andra) skdrningspunkten av w och AB’. Eftersom LB’ ar en diameter till w
sa ar ZLKB' =90°, darav ALK B’ ~ CMB'. Alltsa &r (riktade vinklar)

/KDB' = /KLB' = /MCB' = /ECB' = /EDB'.

vilket innebéar att K, D och F ligger pa samma linje. O



Problem 7. Lat AABC vara en triangel med omskriven cirkel €2, och lat dess inskrivna cirkel
ha medelpunkt I. Lat w vara cirkeln med medelpunkt A som passerar genom I. Lat w skara Q i
punkterna P och Q. Lat X vara skdrningspunkten mellan linjerna PQ och BC. Lat wp och wq
vara de omskrivna cirklarna till APXI respektive AQXI. Lat wp och wg skéra linjen BC igen i
punkterna P’ respektive ), skilda fran X. Bevisa att linjerna PP’ och Q@' skir varandra pa w.

Loésningsforslag. Lat Y = PP’ NQQ’. Da blir (riktade vinklar)
/PYQ=/PYQ =/YPQ + /P'QY
=/PP'X+/XQ'Q=/PIX +/XIQ
= /PIQ.

Alltsa ligger Y pa w, vilket skulle visas. O



Problem 8. Kevin vill simulera en tarning med n sidor. Till sin hjdlp har han en p—sidig tarning
for varje primtal p < n. Eftersom Kevin inte har hur mycket tid som helst for att sla tarningar, sa
vill han gérna minimera véntevirdet pa antalet tdrningskast. Anmdrkning: Detta problem dr vart
10 podng totalt.

(a)

(b)

()

Visa att om n = pq for tva primtal p, ¢ (som inte nédvéndigtvis ar olika), sa kan Kevin simulera
en n—sidig tdrning med exakt exakt 2 tdrningskast. [1 podng]

Visa att han alltid behdver minst 2 kast, men att han kan uppna ett vintevirde som ar mindre
an 3 for alla n > 12. [2 poéng]

Visa att det finns oéindligt manga tal n som inte dr pa formen pq for tva primtal p och g,
saddana att Kevin kan simulera en n—sidig tarning med exakt 2 tarningskast. [7 poang]

Losningsforslag. (a) Lat oss forst kasta en tdrning med p sidor och sedan omedelbart en tarning

(b)

med ¢ sidor. Det finns da pq olika méjliga utfall, namligen (1,1), (1,2),..., (p,q— 1), (p, q), och
var och en av dem ar lika sannolik. Med andra ord later detta oss simulera en pg—térning.

Ett kast ar aldrig tillrackligt, eftersom varje tarning har farre &n n sidor och vi kan darfor
bara fa hogst n — 1 olika utfall efter ett kast, varav varje har en sannolikhet > ﬁ > % att
intraffa. Om vi saledes fér nagot utfall av det forsta kastet bestdmmer oss for att sluta kasta
och tilldela ett slutresultat mellan 1 och n, kommer sannolikheten for detta varde vara storre
an %, vilket &r for mycket.

A andra sidan behéver vi aldrig mer &n 3 kast i véntevirde. Lat oss borja med att kasta en
tdrning med p > % sidor tva ganger (observera att det alltid finns ett primtal mellan % och
n enligt Bertrands postulat). Det finns p? méjliga utfall av dessa tva kast. Vi kan dela in
dem i n grupper med L%j utfall i varje grupp, och tilldela ett olika slutresultat till var och

en av dessa grupper. Dérefter, efter dessa tva kast, med sannolikhet n - L%J har vi redan fatt
vart slutresultat mellan 1 och n, och var och en av dem &r lika sannolikt, och med sannolikhet
l1-n- L%J < 75 har vi dnnu inte fatt ett resultat. Om vi inte har fatt ett resultat annu, lat
oss helt enkelt upprepa ovanstaende process och kasta tva p—téarningar igen. Vi vill berikna
det forvantade antalet kast som kravs tills vi far vart resultat med denna algoritm.

Lat = vara det forvintade antalet kast med denna algoritm. Da har vi att

$§2+%$
p

eftersom vi alltid behover 2 kast, och efter de forsta tva kasten behdver vi z fler kast i
férvantning med sannolikhet hogst p% < HQLM. Genom omformulering far vi att

Om n > 12 far vi att = < 3, vilket skulle visas.

Den hér delen ar ganska 6verraskande; hur skulle vi nagonsin kunna komma undan med exakt
2 kast om inte n = pg? Den stora insikten ar att den andra térningen vi kastar far bero pa
utfallet av den forsta tdrningen.

Antag att a,b,c € N ar heltal och p, ¢, r,Q &r primtal sadana att

par =n
Q<n (2)
aqr +brp + cpg = Q

Eftersom @ < n, kan vi borja med att kasta en @-sidig tdrning och gruppera de mdjliga
utfallen i tre grupper: en grupp av storlek agr (grupp p), en av storlek brp (grupp ¢) och en
av storlek cpq (grupp 7). Gruppen bestdmmer sedan vilken tarning vi kastar nést - en tarning

med p, ¢ eller r sidor. Med denna procedur far vi totalt na utfall med sannolikheten i att



intraffa, nb utfall med sannolikheten == och ne utfall med sannolikheten % Dessa utfall kan
enkelt tilldelas siffrorna 1,...,n pa ett sadant sétt att alla siffror ar lika sannolika. For att
16sa problemet visar vi nu att det finns odndligt manga n = pgr for vilka (2) har en 16sning:

Séatt ¢ = 3 och r = 2 och b = ¢ = 1. Det aterstar da att hitta odndligt manga a, p och @ som
uppfyller
6a+5p = och @ <6p,

eller med andra ord hitta p och @ sa att 5p < @ < 6p och p = @ mod 6. Enligt Dirichlets
sats om aritmetiska foljder finns det odndligt manga primtal som &r kongruenta med bade 1
och 2 modulo 3. Foljaktligen finns det odndligt manga par av pa varandra foljande primtal
p1 < p2 sadana att p; = 1 mod 3 och po = 2 mod 3. Sétt @ till det minsta primtalet storre &n
5pa. Som en konsekvens av primtalssatsen narmar sig forhallandet mellan stora pa varandra
foljande primtal 1, vilket innebéar att

Q_ Q5

— = — 5. nar p; — oo.
P Sp2 P

I synnerhet, for alla tillréckligt stora p; far vi @ < 6p; < 6ps. Detta &r precis vad vi ville ha.
Om @ = 1 mod 3 kan vi sitta p = po. Om inte, da dr Q = 2 mod 3 och vi kan sédtta p = py. 1
bada fallen &r @ — 5p delbart med bade 2 och 3, vilket innebér att vi kan sitta a = (Q — 5p) /6.
Detta ger oandligt manga mdjliga varden pa p och ddrmed odndligt manga mdjliga varden pa
n, som Onskat.

O

10



Problem 9. Givet heltal d < n och ett reellt tal € sa séger vi att en uppsattning med d ortonormala
vektorer vy, ...,vq € R™ ar e—balanserade om

Vi e{1,2,..,n}: <e

b

Lat n = d + 1, och antag att vy,...,uqg € R*! &r en uppsittning ortonormala, e—balanserade
vektorer. Visa att det existerar en uppsittning ortonormala vektorer wy, ws, ..., wq € R4 som &r
O0—balanserade och uppfyller

3

Z(’l}ij — ’U)ij)Q < Cde
(2]
fér nagon konstant C som inte beror pa d och ¢.

Korrektion: Cd%e? istillet for Cde ar en mer naturlig (och starkare) 6vre griins, vilket
var vad som avsags med uppgiften.

Lésningsforslag. Vektorerna v1,...,v4 kan utdkas till en ortonomal bas av R"*! med en sista
vektor x. Vi far att [v1,va,...,v4, 2] &r en ortogonal matris, dérav
d
2 2
224+ v =1. (3)
i=1
Att vy,...,vq ar e-balanserade ar alltsa ekvivalent med att
1
2
;i ———| <E€
[ d+ 1|
for alla j =1,...,d+ 1. I synnerhet sa &r uq,...,uq 0-balanserade om de bildar en ortogonal matris
tillsammans med en vektorn .
Vd+1
y= :
1
Va+1

Detta &r inte ett nédvéndigt villkor, ty komponenterna pa y kan vara negativa. Om vi dock utan in-
skriankning antar att alla komponenter av x ar positiva sa kommer vi kunna se till att komponenterna
av y ocksa vara det.

Lat P beteckna planet som spénns upp av z och y. Eftersom bade x och y har langden 1 och

ligger i P sa finns det en rotation R av planet P som for z till y. S&tt ws ..., wy att vara resultatet
av samma rotation utford pa vy, ...,v,. Pa detta sitt blir [wy,...,wq,y] en rotation av ON-basen
[v1,...,v4, 2], vilket innebér att [wy,...,wq,y] ocksa ar en ON-bas precis som vi ville. Kvar ar att
visa att

D = Z(’Uij — wij)z < Cd252
0,J

for nagot konstant C. Om vi skriver om summan far vi

d
D = Z |’UZ' — wi‘Q
i=1

D beror alltsa pa hur langt vy, ...,vq forflyttas under rotationen. For att berdkna detta avstand,
skriv v = v} + vt dér v} & komponenten av v; som dr i P och v~ dr komonenten av v; som #r
ortogonal mot P. Rotationen flyttar v; lika langt som v}, ndmligen avstandet |v}| - 2sin g, dér 6 ar
rotationsvinkeln av R. Ytterligare kan |v]| skrivas om som |v; - z| dér z &r en enhetsvektor i planet
P vinkelrat mot x. Insattning av detta ger

d 0
D= (v;-2)?2sin 5)2 (4)
i=1
Men vy, ...,vq &r ju en ON-bas av det ortogonala komplementet till z. Saledes &r
d
D w2’ =1z
i=1

11



och (4) simplifieras till
0
D = (2sin -)2
(2sin 2)
Detta uttryck ger precis kvadraten av avstandet som z forflyttas av R. Med andra ord,

d+1

1
D=z~ Rol* = lo— yl* = Y (i — <)’
& A+l

Nu har vi nagot som liknar (3). Konjugatregeln ger

d+1
D= Z <m "

varefter vi kan anvidnda vart antagande om att xy ...,x4+1 > 0 och fa

2
\/d+ )

1 2

varefter (3) slutligen ger
D < (d+1)%? < 4d?e?,

vilket skulle visas.
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Problem 10. Ivar och Ravi bor i ett stort spokhus som bestar av n stycken rum. Varje rum har
ett antal dorrar som leder till andra rum. Totalt finns det n — 1 dorrar, och det &r mojligt att ga
fran vilket rum som helst till vilket annat rum som helst genom en serie dorrar.

En dag bestdmmer sig husets spoken for att gora alla dorrar enkelriktade! Varje dorr fargas rod pa
ena sidan och indigo pa andra sidan, och for att se till att Ivar och Ravi inte kan halla ihop ser
spOkena till att Ivar bara kan ga genom indigo-fargade dorrar medan Ravi bara kan ga genom roda
dorrar.

Eftersom spokena inte vill vara allt for elaka, sa gav dem Ivar och Ravi mojligheten att vianda pa
dorrar sa att fargerna byter plats, men bara enligt vissa regler. Man far bara viinda pa en dérr om
man &r i ett rum som man inte kan ldmna for att alla dorrar har fel farg, och man maste i sa fall
vanda pa alla dorrar i det rummet pa en gang! Visa att, oavsett hur spdkena fargade dérrarna och
oavsett vilka rum Ivar och Ravi &r i fran borjan, sa kan Ivar och Ravi ga runt i huset och véanda pa
dorrarna sa att vilken farg-konfiguration som helst uppnas.

Lo6sningsforslag. Vi gor induktion pa antalet rum. I basfallet finns ett rum och inga dérrar, och
da &r resultatet uppenbart. Anta nu att pastaendet dr sant nar spokhuset innehaller £ rum. Vi
ska visa att det sa ocksa maste vara sant nir spokhuset innehaller k + 1 rum. Betrakta darmed ett
spokhus G med k& + 1 rum. Om alla rum hade tva eller fler dérrar sa hade det funnits atminstone
k + 1 dorrar totalt. Men det finns bara k dorrar. Alltsa maste det finnas atminstone ett rum som
har exakt en dorr. Valj ett godtyckligt sadant rum och kalla det for a.

Lemma 2. Om [var och Ravi dr utanfor a sa kan de vanda pa alla dérrar utom dérren till a hur de
vill, och de kan gora detta sa att dorren till a dr vdnd likadant ndr de ar klara som ndr de borjade.

bevis. Ifall a och dorren till @ inte fanns sa hade huset haft £ rum och £ — 1 dorrar. Enligt induk-
tionshypotesen finns det alltsa en sekvens drag som later Ivar och Ravi vinda pa alla dorrar at ratt
hall. Om Ivar och Ravi utfor dessa drag i huset med k + 1 dorrar kan dock nagon raka vinda pa
dorren till a. Dessutom, om nagon vill vinda pa alla dérrarna fran b sa kan dorren till ¢ forhindra
dem fran att gora detta. Dessa problem kan dock 16sas med foljande justeringar av strategin:

1. Varje gang nagon skulle ha vant dérrarna i b men stoppas pa grund av dérren till a, 1at dem
istallet ga in i a, fastna, vinda pa dorren, och ga tillbaka till b. Déarefter kommer personen
kunna vanda pa dorrarna till i b. Dérren till ¢ vands pa detta satt tva ganger sa den ar vand
likadant efter processen.

2. Varje gang nagon vander pa dorrarna i b, men pa sa sitt rakar vinda pa dorren till a, lat de
déirefter ga in i a, fastna, viinda pa dorren och ga tillbaka till b. Atergien véinds dérren tva
ganger, vilket innebér att den &dr vind at samma hall som den var ursprungligen.

Detta bevisar lemmat. O

Nu kan vi beskriva Ivar och Ravis stragegi: Om Ivar eller Ravi &r innuti a sa gar de ut (vilket
kan innebéra att de behdver vanda pa dorren dit). Nér varken Ivar eller Ravi &r i a sa kollar de
om dorren till @ dr vind réatt hall. Om den &r det anvinder de Lemma 2 for att bli klara. Om
den inte ar de sa maste antingen Ivar eller Ravi ta sig dit och vinda pa dorren. Vi kan anta utan
inskrankning pa problemet att dorren in i a ar rod och att det darfor ar Ravi som maste ga in i rum
a och vanda pa dorren. For att ta sig till rummet kan de anvinda Lemma 2 och vénda pa alla dérrar
sa att Ravi kan ta sig till a fran vilket rum som helst (Detta ar alltid mojligt eftersom det huset
ar en sammanhéngande tradgraf. "Héang upp” grafen i a och mala varje dorr sa att den réda sidan
hamnar nedat.). Ravi kan sedan ga till a, véinda pa dorren och ga ut. Slutligen anvénder de Lemma
2 igen for att vanda resten av dorrarna hur de vill. D& ar de klara, och enligt induktionsprincipen
lyckas de oavsett storleken pa spokhuset. O
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Problem 11. Lat k vara ett positivt heltal. Lat S vara en oéndlig méngd punkter i planet sadan
att alla slutna cirklar med radie 1 innehaller hogst k& punkter i S. Visa att det finns en positiv
konstant C' oberoende av k och S sadan att:

C
(a) Det finns en cirkel med radie r =1 + o* som innehaller hogst k punkter i S.

C
(b) Det finns en cirkel med radie r =1 + % Som innehaller hogst k punkter i S.

Observera: Om du kan visa (b) behdver du inte ett separat bevis for (a). Om du har ndgot resultat
som ar starkare dn (a) men svagare an (b), kan vi ge podang for det.

Lo6sningsforslag. (b) Vi anviander probabilistiska metoden. Introducera ett koordinatsystem. Lat
A vara slumpméssigt vald punkt bland punkterna Q4 = {a € S : |a|] < M} dér M &r nagot stort
tal. L&t slumpvariabeln X vara uniformt fordelad i cirkelskivan Qy = {z € R? : |[z| < M +1}. A
ar alltsa diskret medan X &r kontinuerlig. Varje cirkel med medelpunkt a € 4 och radie 1 &r helt
innuti Qx. For varje a € 4 giller darmed

Area{z € Qx : |z —a| < 1)} T 1

P(X —al<1) = Arca(Qx) CA(M 17 (M4

A andra sidan, for varje z € Qx galler

Pr—Al<1) = #{aEQA#(IZa;—alél} < #gA_

Vi har pa sa vis visat att
1
— =P X -A <) <
(M +1)2 ( = )_#QA
Anta nu att r ar sadant att alla cirklar med radie r innehaller atminstone k + 1 punkter fran S.
Lat sedan slumpvariabeln Y vara uniformt fordelad i cirkelskivan {y € R? : |y| < M —r}. For varje

a € Qy far vi da olikheten

(5)

Area{y € Qy : ly—a| <7)} 7r? r?
—al < = < = .
P(Y —al<r) Area(Qy) =a(M -2 (M—r)?

Varje cirkel med mittpunkt y € Qy och radie r ligger helt innuti Q4. Saledes géller

7#{a€QA:|y—a\§r}>k+1

P(ly—Al<r)

#Q0a T #]
darav
r? k+1
—— >P(Y -A|<r) > . 6
Division av (6) med (5) ger slutligen
7’2<M+1)2 Skt
(M—-r)2~ k

vilket nar M — oo blir

r?>1+1 = r>\/1—|—1>\/1+2+1—1+1
= k = k 3k 9k2 3k’

For allar <1+ i finns alltsa en cirkel med radie 7 som innehaller som hogst & punkter. O
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