
HÖJDPUNKTEN 2024

Lösningsförslag öppen tavling

Skrivtid: 3 timmar
Hjälpmedel: endast penna, sudd, passare och linjal
Motivera alla lösningar. Enbart svar ger inga pöang om inte annat anges.

Problem 1. L̊at n vara ett positivit heltal. Visa att det finns en följd {a0, a1, a2, . . . , an} av heltal
större än 1 s̊adana att

a0! · a1! · a2! · · · an−1! = an!.

Lösningsförslag. Vi använder induktion. Basfall: Om n = 1 s̊a löses ekvationen trivialt genom
att sätta a0 = a1. Anta nu att a0! · a1! · · · an−1! = an!. För att skapa en liknande produkt med en
till faktor, skriv

(an!)! = an! · (an!− 1)! = a0! · a1! · · · an−1!(an!− 1)!

Denna metod l̊ater oss induktivt skapa produkter med godtyckligt m̊anga faktorer.

Kommentar: Fakulteter känns väldigt kombinatoriska, s̊a en rimlig fr̊aga är om det finns n̊agon
trevlig kombinatorisk tolkning av problemet. Lösningen ovan är s̊a enkel att vi förmodligen inte bör
hoppas p̊a n̊agot mer koncist, men det är alltid trevligt när det finns flera sätt att lösa ett problem.
Och faktiskt, det finns en smart metod att göra detta utan att skriva ner nästan n̊agra ekvationer!

Först observera att ett naturligt tal är en fakultet om och endast om det är antalet sätt att ordna
elementen i en ändlig mängd S. Nu l̊at

• S0 vara mängden 1, 2, 3, ..., a

• Sk+1 vara mängden av permutationer av elementen i Sk

Uppenbarligen är storleken p̊a Sk+1 en fakultet, enligt observationen ovan. Men det är ocks̊a lika
med antalet sätt att välja det första elementet fr̊an Sk, vilket är exakt |Sk|, g̊anger antalet sätt
att permutera de resterande elementen i Sk, vilket ocks̊a är en fakultet enligt observationen ovan.
Genom induktion f̊ar vi att |Sk| är en produkt av k fakulteter, och s̊aledes är |Sk+1| en produkt av
k + 1 fakulteter. Därmed är vi klara!
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Problem 2. En ändlig mängd med positiva heltal {k1, k2, . . . , kn} är given. Visa att det finns ett
positivt heltal m s̊a att talen mk1,mk2, . . . ,mkn alla har olika antal delare.

Lösningsförslag (1). Enligt aritmetikens fundamentalteorem kan vi hitta ett heltal r och en matris

A ∈ Nn×r s̊a att ki = p
Ai,1

1 p
Ai,2

2 · · · pAi,r
r för varje i ∈ {1, . . . , n}. Om primtalsfaktoriseringen av m

är pµ1

1 pµ2

2 · · · pµr
r är antalet delare av mki d̊a

d(mki) =

r∏
j=1

(µj +Ai,j + 1).

Hur kan vi göra alla dessa produkter olika? L̊at oss konstruera µ1, . . . , µr s̊a att d(mki) är delbart
med en unik uppsättning primtal för varje i. L̊at Amax vara det största elementet i A, och l̊at
B ∈ Nn×r vara en matris av parvis olika primtal som alla är större än Amax+1. Enligt den kinesiska
restsatsen kan vi välja µ1, . . . , µr s̊a att för alla i ∈ {1, . . . , n} och j1, j2 ∈ {1, . . . , r},{

µj2 ≡ −1−Ai,j2 (mod Bi,j1) om j1 = j2,

µj2 ≡ 0 (mod Bi,j1) om j1 ̸= j2.
(1)

Vi hävdar att detta gör att mk1,mk2, . . . ,mkn har olika antal delare som önskat. Betrakta tv̊a
godtyckliga ki1 och ki2 där i1 ̸= i2. Eftersom ki1 och ki2 har olika primtalsfaktoriseringar m̊aste det
finnas ett tal j1 s̊a att Ai1,j1 ̸= Ai2,j1 . Fr̊an (1) f̊ar vi att

µj1Ai,j1 + 1 ≡ 0 (mod Bi,j1)

=⇒ Bi1,j1 | d(mki1)

Vi visar nu att Bi1,j1 ∤ d(mki2) genom att visa att Bi1,j1 inte delar µj2 +Ai2,j2 +1 för n̊agot j2. Om
j2 ̸= j1, f̊ar vi

µj2 +Ai2,j2 + 1 ≡ Ai2,j2 + 1 (mod Bi1,j1),

vilket, eftersom Ai2,j2 + 1 ≤ Amax + 1 < Bi1,j1 , innebär att

Bi1,j1 ∤ µj2 +Ai2,j2 + 1.

Detta lämnar en sista faktor av d(mki2) att kontrollera, nämligen µj1+Ai2,j1+1. För detta tillämpar
vi första fallet av (1) och f̊ar

µj1 +Ai2,j1 + 1 ≡ Ai2,j1 −Ai1,j1

vilket som tidigare inte kan vara delbart med Bi1,j1 , eftersom Ai2,j1 − Ai1,j1 är nollskilt och har en
magnitud som inte är större än Amax

Lösningsförslag (2). Vi kan ocks̊a visa detta med induktion p̊a n. Detta är v̊ar plan:

Basfall: För n = 1 finns det inget att visa.

Induktionssteg: Anta att vi har löst problemet för n−1, det vill säga att vi kan välja ett tal c s̊a att ck1, ..., ckn−1

har olika antal delare. V̊ar plan härifr̊an är att välja ett primtal p (vi kommer att bestämma
vilket senare), och multiplicera k1, ..., kn med pαc för n̊agot icke-negativt heltal α. Nedan
kommer vi att visa att det alltid finns ett val av p och α för vilka pαck1, ..., p

αckn har parvis
olika antal delare, vilket avslutar induktionen.

Innan vi bevisar induktionssteget, l̊at oss introducera viss notation. Anta att vi redan har valt v̊art
primtal p.

• L̊at di beteckna antalet delare av cki, för i = 1, 2, ..., n.

• L̊at αi − 1 beteckna antalet g̊anger som cki är delbart med primtalet p (s̊a αi är en mer än
antalet g̊anger p delar cki. Vi gör detta underliga val för att förenkla algebran senare).

Det är lätt att visa att antalet delare av ett tal med primtalsfaktorisering qβ1

1 · ... · qβm
m är exakt

(β1 + 1) · ... · (βm + 1) (detta beror p̊a att det finns βi + 1 sätt att välja antalet g̊anger som qi
förekommer i faktoriseringen av v̊art delare). Därför, eftersom antalet g̊anger som p delar pαcki är
α+ αi − 1, f̊ar vi:

antal delare av pαcki = di
α+ αi

αi
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Antag att det finns n̊agra i ̸= j s̊adana att

di
α+ αi

αi
= dj

α+ αj

αj

⇐⇒ di(α+ αi)αj = dj(α+ αj)αi

⇐⇒ α(diαj − djαi) = αiαj(dj − di)

Om diαj − djαi ̸= 0, finns det exakt ett (rationellt) α för vilket detta är sant. Om diαj − djαi = 0,
är vänsterledet alltid 0 oavsett v̊art val av α, och det kan därför endast vara sant om dj = di. Vi
kan allts̊a dra slutsatsen att för varje par i ̸= j, antingen:

• diαj − djαi ̸= 0 och det finns exakt en α som vi m̊aste undvika, eller

• diαj − djαi = 0 och di ̸= dj , i vilket fall vilket α som helst fungerar, eller

• diαj − djαi = 0 och di = dj , i vilket fall det inte finns n̊agot α som är tillräckligt bra.

Eftersom vi alltid kan undvika ändligt m̊anga val av α, är det enda vi m̊aste se till att det inte finns
n̊agot i ̸= j för vilket vi hamnar i det tredje fallet. Enligt induktion vet vi redan att di ̸= dj för
i, j ≤ n − 1. Detta innebär ocks̊a att det högst finns ett i s̊adant att dn = di, och för att avsluta
m̊aste vi bara välja p s̊a att diαn − dnαi ̸= 0 för det ena i. Men vi vet att di = dn, s̊a detta är
ekvivalent med att välja ett p s̊adant att αi ̸= αn. Ett s̊adant p finns alltid enligt v̊art antagande
om att k1 ̸= kn. Beviset är s̊aledes färdigt.
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Problem 3.

(a) Tilda har en rektangulär bräda som är 1 dm l̊ang och 16/9 dm bred. Visa att hon kan s̊aga
isär den i tv̊a delar som kan sättas ihop till en kvadrat.

(b) Hitta oändligt m̊anga tal x s̊adana att en 1 dm g̊anger x dm bräda kan s̊agas isär i tv̊a delar
som kan sättas ihop till en kvadrat.

Lösningsförslag. Del (a): Den kan sedan byggas om till en kvadrat enligt figuren nedan:

Del (b): Fr̊an en kvadrat kan man skapa en rektangel med följande metod:

1. Dela upp kvadraten i ett n× (n+ 1) rutnät.

2. Rita en trappa längs rutnätet som delar upp kvadraten i tv̊a lika stora delar.

3. Flytta ner den översta delen ett trappsteg.

Den resulterande rektangeln best̊ar d̊a av ett n×(n+1) rutnät av n×(n+1) rutor. Dessa förh̊allandet

mellan dess sidor blir därmed (n + 1)2 : n2. Om vi sätter x = (n+1)2

n2 för n̊agot heltal n s̊a kan vi
utföra samma process baklänges och p̊a s̊a vis transformera en 1 × x rektangel till en n+1

n × n+1
n

kvadrat. För följande värden p̊a x är allts̊a möjliga:

4

1
,
9

4
,
16

9
,
25

16
, . . . ,

(n+ 1)2

n2
, . . .

4



Problem 4. Ett polynom kallas inversigt om för alla rötter a s̊a är 1/a ocks̊a en rot. L̊at f vara
ett irreducibelt rationellt polynom av grad ≥ 2. Antag att f har en rot b ∈ C med |b| = 1. Visa att
f är inversig och har jämn grad.

Lösningsförslag (1). L̊at f(x) = a0 + a1x + · · · + anx
n. Först p̊ast̊ar vi att f inte har n̊agra

dubbelrötter. Detta är en sats om irreducibla polynom som kan bevisas p̊a följande sätt: L̊at a vara
en rot till f med multiplicitet åtminstone 2. D̊a kan f skrivas som f(x) = (x − a)2q(x) för n̊agot
rationellt polynom q. D̊a har vi att derivatan f ′(x) = 2(x− a)q(x) + (x− a)2q′(x) ocks̊a har a som
rot. S̊a den största gemensamma delaren gcd(f, f ′) har grad minst 1, men d̊a f är irreducibel m̊aste
den vara lika med f . Det är dock omöjligt för f att vara en delare till f ′ d̊a den senare har lägre
grad.

Nu betraktar vi det rationella polynomet g(x) = xnf(1/x). Om α är en rot till f s̊a är 1
α en rot

till g. Eftersom f och g har samma grad, och f inte har n̊agra dubbelrötter, s̊a är rötterna till g
exakt de multiplikativa inverserna till rötterna av f .

Betrakta nu talet b. Notera att b inte kan vara 1 eller −1, d̊a f annars hade haft grad 1. Allts̊a
är b icke-reellt, och eftersom f har rationella koefficienter m̊aste även b = 1

b vara en rot till f . Vi
har allts̊a att b och 1

b är rötter till b̊ade f och g. Men d̊a m̊aste den största gemensamma delaren
gcd(f, g) ha grad minst 2, och därför vara lika med f . D̊a f och g har samma grad m̊aste vi ha
f = g, s̊a att f är inversigt. Att f har jämn grad följer av att det inte har n̊agra dubbelrötter och
inte har rötter 1 eller −1, s̊a att man kan para ihop varje rot av f till sin multiplikativa invers.

Lösningsförslag (2 (Galoisteori)). Vi visar att f inte har dubbelrötter och att 1
b är en rot till f

p̊a samma sätt som i lösningsförslag 1. Vi använder följande lemma fr̊an galoisteori.

Lemma 1. Om α och β är rötter till samma irreducibla polynom över Q, s̊a finns det en funktion
φ : C → C s̊a att, för alla a, b ∈ C och för alla q ∈ Q:

• φ(α) = β

• φ(a+ b) = φ(a) + φ(b).

• φ(ab) = φ(a)φ(b).

• φ är bijektiv.

• φ(q) = q.

Med andra ord s̊a är φ en Q-bevarande automorfism av C som skickar α till β.

L̊at a vara en rot till f som inte är b eller 1/b. Vi vill visa att 1/a även är en rot till f . Vi
använder lemma 1 för att hitta:

• φ: en Q-bevarande automorfism av C som skickar a till b.

• ψ: en Q-bevarande automorfism av C som skickar b till 1
b .

Vi p̊ast̊ar att h(a) := φ−1 ◦ ψ ◦ φ(a) = 1
a . Vi beräknar

a(φ−1 ◦ ψ ◦ φ)(a) = 1 ⇐⇒ φ(a(φ−1 ◦ ψ ◦ φ)(a)) = φ(1) = 1

⇐⇒ φ(a)ψ(φ(a)) = 1

⇐⇒ b · 1
b
= 1

Notera nu att h är en Q-bevarande automorfism av C. Vi har allts̊a att

0 = h(0) = h(f(a)) = f(h(a)) = f

(
1

a

)
s̊a att 1

a ocks̊a är en rot av f . Vi har allts̊a att f är inversigt. Att f har jämn grad visas p̊a samma
sätt som i lösningsförslag 1.
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Problem 5. Ung Vetenskapssport har växt! Vi är nu m̊anga som är engagerade och vill ha tillg̊ang
till alla UVS olika kanaler för att n̊a ut till v̊ara fantastiska medlemmar. Men ju fler som f̊ar tillg̊ang,
desto större blir säkerhetsrisken; vad händer om n̊agon f̊ar sitt konto hackat? Vi behöver nu er hjälp
för att lösa detta problem!
Det är n personer som vill ha tillg̊ang till UVS konton. Vi vill hitta p̊a ett system som garanterar
att om 1 ≤ m ≤ n personer tillsammans vill logga in s̊a kan de göra det, men om m − 1 personer
vill logga in s̊a har det inte nog med information för att göra det.
Efter l̊anga diskussioner kom vi fram till följande förslag. Vi väljer ett lösenord med M siffror
x1x2...xM , och avslöjar sedan n̊agon delmängd av dessa siffror för varje person som vill ha tillg̊ang
till v̊ara konton.

(a) Är det möjligt att dela ut siffrorna s̊a att kravet ovan är uppfyllt?

(b) Om svaret är ja, vilket är det minsta M för vilket det är möjligt (uttryckt i n och m)?

Lösningsförslag.

(a) Ja. Skapa ett lösenord med
(

n
m−1

)
=
(

n
n−m+1

)
siffror och visa en siffra för varje mängd av

n −m + 1 personer. Om m − 1 personer träffas s̊a kommer de sakna siffran som resterande
n−m+ 1 personer känner till. Men om m personer träffas s̊a kommer åtminstone en person
fr̊an varje mängd av n−m+ 1 personer vara med i träffen.

(b) Vi p̊ast̊ar att konstruktionen ovan är optimal. Anta därför att lösenordet best̊ar av färre än(
n

m−1

)
siffror och att varje mängd av m− 1 personer har en siffra som de inte känner till. Det

finns d̊a (enligt l̊adprincipen) tv̊a olika mängder av m− 1 personer som saknar samma siffra.
Unionen av dessa tv̊a mängder (som tillsammas har minst m personer) saknar allts̊a ocks̊a en
siffra. Detta bevisar att lösenordet m̊aste ha åtminstone

(
n

m−1

)
siffror.

Kommentar. En naturlig fr̊aga är vad som händer om vi har mer komplicerade krav än ”vilken
m personer som helst bör till̊atas att g̊a in, men inte m− 1 personer”. Vad händer om till exempel
styrelsen ska ha speciella befogenheter som till̊ater dem att g̊a in även om endast tv̊a av dem är
närvarande, men om ingen styrelsemedlem är närvarande kräver vi åtminstone tio personer för att
vara närvarande? Lösningen ovan hanterar s̊adana fr̊agor ganska bra ocks̊a.
Säg att vi har en lista S1, S2, ..., Sr ⊂ 1, 2, ..., n av grupper av personer som ska till̊atas att g̊a in
(där vi numrerar de personer som vill ha tillg̊ang som 1, 2, ..., n), och anta att varje delmängd av
1, 2, ..., n som inte finns med i listan inte ska f̊a tillträde. D̊a är ett uppenbart krav för att det ska
finnas en lösning p̊a v̊art problem att Si ⊂ B =⇒ B = Sj för n̊agot j (eller ekvivalent: om en
mängd B inte finns med i listan, kan ingen delmängd av B heller finnas med i listan). Men detta
är faktiskt tillräckligt! Om listan över mängder som inte finns med i listan är R1, ..., Rm, s̊a kan vi
välja en siffra för varje mängd 1, ..., n \Ri och ge den endast till dessa personer. ...
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Problem 6. L̊at △ABC vara en triangel s̊adan att |AB| < |AC|. L̊at B′ vara punkten p̊a sidan
AC s̊adan att |AB| = |AB′|. L̊at D vara en punkt s̊adan att |AB| = |AD|, skild fr̊an B och B′.
Den omskrivna cirkeln till △B′CD skär linjen BC en andra g̊ang i punkten E, skild fr̊an C. Bevisa
att det existerar en fixpunkt K oberoende av D, s̊adan att linjen DE g̊ar genom K för alla möjliga
val av punkten D.

Lösningsförslag. L̊at ω beteckna cirkeln med medelpunkt A och som inneh̊aller B, B′ och D. L̊at
M vara projektionen av B′ p̊a BC och l̊at K vara (den andra) skärningspunkten av ω och B′M .
L̊at även L vara (den andra) skärningspunkten av ω och AB′. Eftersom LB′ är en diameter till ω
s̊a är ∠LKB′ = 90◦, därav △LKB′ ∼ CMB′. Allts̊a är (riktade vinklar)

∠KDB′ = ∠KLB′ = ∠MCB′ = ∠ECB′ = ∠EDB′.

vilket innebär att K, D och E ligger p̊a samma linje.
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Problem 7. L̊at △ABC vara en triangel med omskriven cirkel Ω, och l̊at dess inskrivna cirkel
ha medelpunkt I. L̊at ω vara cirkeln med medelpunkt A som passerar genom I. L̊at ω skära Ω i
punkterna P och Q. L̊at X vara skärningspunkten mellan linjerna PQ och BC. L̊at ωP och ωQ

vara de omskrivna cirklarna till △PXI respektive △QXI. L̊at ωP och ωQ skära linjen BC igen i
punkterna P ′ respektive Q′, skilda fr̊an X. Bevisa att linjerna PP ′ och QQ′ skär varandra p̊a ω.

Lösningsförslag. L̊at Y = PP ′ ∩QQ′. D̊a blir (riktade vinklar)

∠PY Q = ∠P ′Y Q′ = ∠Y P ′Q′ + ∠P ′Q′Y

= ∠PP ′X + ∠XQ′Q = ∠PIX + ∠XIQ

= ∠PIQ.

Allts̊a ligger Y p̊a ω, vilket skulle visas.
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Problem 8. Kevin vill simulera en tärning med n sidor. Till sin hjälp har han en p−sidig tärning
för varje primtal p < n. Eftersom Kevin inte har hur mycket tid som helst för att sl̊a tärningar, s̊a
vill han gärna minimera väntevärdet p̊a antalet tärningskast. Anmärkning: Detta problem är värt
10 poäng totalt.

(a) Visa att om n = pq för tv̊a primtal p, q (som inte nödvändigtvis är olika), s̊a kan Kevin simulera
en n−sidig tärning med exakt exakt 2 tärningskast. [1 poäng]

(b) Visa att han alltid behöver minst 2 kast, men att han kan uppn̊a ett väntevärde som är mindre
än 3 för alla n ≥ 12. [2 poäng]

(c) Visa att det finns oändligt m̊anga tal n som inte är p̊a formen pq för tv̊a primtal p och q,
s̊adana att Kevin kan simulera en n−sidig tärning med exakt 2 tärningskast. [7 poäng]

Lösningsförslag. (a) L̊at oss först kasta en tärning med p sidor och sedan omedelbart en tärning
med q sidor. Det finns d̊a pq olika möjliga utfall, nämligen (1, 1), (1, 2), ..., (p, q− 1), (p, q), och
var och en av dem är lika sannolik. Med andra ord l̊ater detta oss simulera en pq−tärning.

(b) Ett kast är aldrig tillräckligt, eftersom varje tärning har färre än n sidor och vi kan därför
bara f̊a högst n − 1 olika utfall efter ett kast, varav varje har en sannolikhet ≥ 1

n−1 >
1
n att

inträffa. Om vi s̊aledes för n̊agot utfall av det första kastet bestämmer oss för att sluta kasta
och tilldela ett slutresultat mellan 1 och n, kommer sannolikheten för detta värde vara större
än 1

n , vilket är för mycket.

Å andra sidan behöver vi aldrig mer än 3 kast i väntevärde. L̊at oss börja med att kasta en
tärning med p ≥ n

2 sidor tv̊a g̊anger (observera att det alltid finns ett primtal mellan n
2 och

n enligt Bertrands postulat). Det finns p2 möjliga utfall av dessa tv̊a kast. Vi kan dela in

dem i n grupper med ⌊p2

n ⌋ utfall i varje grupp, och tilldela ett olika slutresultat till var och

en av dessa grupper. Därefter, efter dessa tv̊a kast, med sannolikhet n · ⌊p2

n ⌋ har vi redan f̊att
v̊art slutresultat mellan 1 och n, och var och en av dem är lika sannolikt, och med sannolikhet

1− n · ⌊p2

n ⌋ < n
p2 har vi ännu inte f̊att ett resultat. Om vi inte har f̊att ett resultat ännu, l̊at

oss helt enkelt upprepa ovanst̊aende process och kasta tv̊a p−tärningar igen. Vi vill beräkna
det förväntade antalet kast som krävs tills vi f̊ar v̊art resultat med denna algoritm.
L̊at x vara det förväntade antalet kast med denna algoritm. D̊a har vi att

x ≤ 2 +
n

p2
x

≤ 2 +
nx

n2/4

= 2 +
4x

n

eftersom vi alltid behöver 2 kast, och efter de första tv̊a kasten behöver vi x fler kast i
förväntning med sannolikhet högst n

p2 ≤ n
n2/4 . Genom omformulering f̊ar vi att

x ≤ 2

1− 4
n

=
2n

n− 4
= 2 +

8

n− 4

Om n ≥ 12 f̊ar vi att x ≤ 3, vilket skulle visas.

(c) Den här delen är ganska överraskande; hur skulle vi n̊agonsin kunna komma undan med exakt
2 kast om inte n = pq? Den stora insikten är att den andra tärningen vi kastar f̊ar bero p̊a
utfallet av den första tärningen.

Antag att a, b, c ∈ N är heltal och p, q, r,Q är primtal s̊adana att
pqr = n

Q < n

aqr + brp+ cpq = Q

(2)

Eftersom Q < n, kan vi börja med att kasta en Q-sidig tärning och gruppera de möjliga
utfallen i tre grupper: en grupp av storlek aqr (grupp p), en av storlek brp (grupp q) och en
av storlek cpq (grupp r). Gruppen bestämmer sedan vilken tärning vi kastar näst - en tärning
med p, q eller r sidor. Med denna procedur f̊ar vi totalt na utfall med sannolikheten 1

pQ att

9



inträffa, nb utfall med sannolikheten 1
qQ och nc utfall med sannolikheten 1

rQ . Dessa utfall kan
enkelt tilldelas siffrorna 1, . . . , n p̊a ett s̊adant sätt att alla siffror är lika sannolika. För att
lösa problemet visar vi nu att det finns oändligt m̊anga n = pqr för vilka (2) har en lösning:

Sätt q = 3 och r = 2 och b = c = 1. Det återst̊ar d̊a att hitta oändligt m̊anga a, p och Q som
uppfyller

6a+ 5p = Q och Q < 6p,

eller med andra ord hitta p och Q s̊a att 5p < Q < 6p och p ≡ Q mod 6. Enligt Dirichlets
sats om aritmetiska följder finns det oändligt m̊anga primtal som är kongruenta med b̊ade 1
och 2 modulo 3. Följaktligen finns det oändligt m̊anga par av p̊a varandra följande primtal
p1 < p2 s̊adana att p1 ≡ 1 mod 3 och p2 ≡ 2 mod 3. Sätt Q till det minsta primtalet större än
5p2. Som en konsekvens av primtalssatsen närmar sig förh̊allandet mellan stora p̊a varandra
följande primtal 1, vilket innebär att

Q

p1
=

Q

5p2

5p2
p1

→ 5. när p1 → ∞.

I synnerhet, för alla tillräckligt stora p1 f̊ar vi Q < 6p1 < 6p2. Detta är precis vad vi ville ha.
Om Q ≡ 1 mod 3 kan vi sätta p = p2. Om inte, d̊a är Q ≡ 2 mod 3 och vi kan sätta p = p1. I
b̊ada fallen är Q−5p delbart med b̊ade 2 och 3, vilket innebär att vi kan sätta a = (Q−5p)/6.
Detta ger oändligt m̊anga möjliga värden p̊a p och därmed oändligt m̊anga möjliga värden p̊a
n, som önskat.
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Problem 9. Givet heltal d < n och ett reellt tal ε s̊a säger vi att en uppsättning med d ortonormala
vektorer v1, ..., vd ∈ Rn är ε−balanserade om

∀j ∈ {1, 2, ..., n} :

∣∣∣∣∣
d∑

i=1

v2ij −
d

n

∣∣∣∣∣ ≤ ε

L̊at n = d + 1, och antag att v1, ..., vd ∈ Rd+1 är en uppsättning ortonormala, ε−balanserade
vektorer. Visa att det existerar en uppsättning ortonormala vektorer w1, w2, ..., wd ∈ Rd+1 som är
0−balanserade och uppfyller ∑

i,j

(vij − wij)
2 < Cdε

för n̊agon konstant C som inte beror p̊a d och ε.

Korrektion: Cd2ε2 istället för Cdε är en mer naturlig (och starkare) övre gräns, vilket
var vad som åvs̊ags med uppgiften.

Lösningsförslag. Vektorerna v1, . . . , vd kan utökas till en ortonomal bas av Rn+1 med en sista
vektor x. Vi f̊ar att [v1, v2, . . . , vd, x] är en ortogonal matris, därav

x2j +

d∑
i=1

v2ij = 1. (3)

Att v1, . . . , vd är ϵ-balanserade är allts̊a ekvivalent med att

|x2j −
1

d+ 1
| < ε

för alla j = 1, . . . , d+1. I synnerhet s̊a är u1, . . . , ud 0-balanserade om de bildar en ortogonal matris
tillsammans med en vektorn

y =


1√
d+1
...
1√
d+1

 .
Detta är inte ett nödvändigt villkor, ty komponenterna p̊a y kan vara negativa. Om vi dock utan in-
skränkning antar att alla komponenter av x är positiva s̊a kommer vi kunna se till att komponenterna
av y ocks̊a vara det.

L̊at P beteckna planet som spänns upp av x och y. Eftersom b̊ade x och y har längden 1 och
ligger i P s̊a finns det en rotation R av planet P som för x till y. Sätt w1 . . . , wd att vara resultatet
av samma rotation utförd p̊a v1, . . . , vn. P̊a detta sätt blir [w1, . . . , wd, y] en rotation av ON-basen
[v1, . . . , vd, x], vilket innebär att [w1, . . . , wd, y] ocks̊a är en ON-bas precis som vi ville. Kvar är att
visa att

D :=
∑
i,j

(vij − wij)
2 < Cd2ε2

för n̊agot konstant C. Om vi skriver om summan f̊ar vi

D =

d∑
i=1

|vi − wi|2

D beror allts̊a p̊a hur l̊angt v1, . . . , vd förflyttas under rotationen. För att beräkna detta avst̊and,
skriv v = v′i + v⊥i där v′i är komponenten av vi som är i P och v⊥i är komonenten av vi som är
ortogonal mot P . Rotationen flyttar vi lika l̊angt som v′i, nämligen avst̊andet |v′i| · 2 sin θ

2 , där θ är
rotationsvinkeln av R. Ytterligare kan |v′i| skrivas om som |vi · z| där z är en enhetsvektor i planet
P vinkelrät mot x. Insättning av detta ger

D =

d∑
i=1

(vi · z)2(2 sin
θ

2
)2 (4)

Men v1, . . . , vd är ju en ON-bas av det ortogonala komplementet till x. S̊aledes är

d∑
i=1

(vi · z)2 = |z|2
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och (4) simplifieras till

D = (2 sin
θ

2
)2.

Detta uttryck ger precis kvadraten av avst̊andet som x förflyttas av R. Med andra ord,

D = |x−Rx|2 = |x− y|2 =

d+1∑
i=1

(xi −
1√
d+ 1

)2

Nu har vi n̊agot som liknar (3). Konjugatregeln ger

D =

d+1∑
i=1

(
x2i − 1

d+1

xi +
1√
d+1

)2

varefter vi kan använda v̊art antagande om att x1 . . . , xd+1 ≥ 0 och f̊a

D ≤
d+1∑
i=1

(d+ 1)
∣∣x2i − 1

d+ 1

∣∣2
varefter (3) slutligen ger

D ≤ (d+ 1)2ε2 ≤ 4d2ε2,

vilket skulle visas.
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Problem 10. Ivar och Ravi bor i ett stort spökhus som best̊ar av n stycken rum. Varje rum har
ett antal dörrar som leder till andra rum. Totalt finns det n − 1 dörrar, och det är möjligt att g̊a
fr̊an vilket rum som helst till vilket annat rum som helst genom en serie dörrar.
En dag bestämmer sig husets spöken för att göra alla dörrar enkelriktade! Varje dörr färgas röd p̊a
ena sidan och indigo p̊a andra sidan, och för att se till att Ivar och Ravi inte kan h̊alla ihop ser
spökena till att Ivar bara kan g̊a genom indigo-färgade dörrar medan Ravi bara kan g̊a genom röda
dörrar.
Eftersom spökena inte vill vara allt för elaka, s̊a gav dem Ivar och Ravi möjligheten att vända p̊a
dörrar s̊a att färgerna byter plats, men bara enligt vissa regler. Man f̊ar bara vända p̊a en dörr om
man är i ett rum som man inte kan lämna för att alla dörrar har fel färg, och man m̊aste i s̊a fall
vända p̊a alla dörrar i det rummet p̊a en g̊ang! Visa att, oavsett hur spökena färgade dörrarna och
oavsett vilka rum Ivar och Ravi är i fr̊an början, s̊a kan Ivar och Ravi g̊a runt i huset och vända p̊a
dörrarna s̊a att vilken färg-konfiguration som helst uppn̊as.

Lösningsförslag. Vi gör induktion p̊a antalet rum. I basfallet finns ett rum och inga dörrar, och
d̊a är resultatet uppenbart. Anta nu att p̊ast̊aendet är sant när spökhuset inneh̊aller k rum. Vi
ska visa att det s̊a ocks̊a m̊aste vara sant när spökhuset inneh̊aller k + 1 rum. Betrakta därmed ett
spökhus G med k + 1 rum. Om alla rum hade tv̊a eller fler dörrar s̊a hade det funnits åtminstone
k + 1 dörrar totalt. Men det finns bara k dörrar. Allts̊a m̊aste det finnas åtminstone ett rum som
har exakt en dörr. Välj ett godtyckligt s̊adant rum och kalla det för a.

Lemma 2. Om Ivar och Ravi är utanför a s̊a kan de vända p̊a alla dörrar utom dörren till a hur de
vill, och de kan göra detta s̊a att dörren till a är vänd likadant när de är klara som när de började.

bevis. Ifall a och dörren till a inte fanns s̊a hade huset haft k rum och k − 1 dörrar. Enligt induk-
tionshypotesen finns det allts̊a en sekvens drag som l̊ater Ivar och Ravi vända p̊a alla dörrar åt rätt
h̊all. Om Ivar och Ravi utför dessa drag i huset med k + 1 dörrar kan dock n̊agon r̊aka vända p̊a
dörren till a. Dessutom, om n̊agon vill vända p̊a alla dörrarna fr̊an b s̊a kan dörren till a förhindra
dem fr̊an att göra detta. Dessa problem kan dock lösas med följande justeringar av strategin:

1. Varje g̊ang n̊agon skulle ha vänt dörrarna i b men stoppas p̊a grund av dörren till a, l̊at dem
istället g̊a in i a, fastna, vända p̊a dörren, och g̊a tillbaka till b. Därefter kommer personen
kunna vända p̊a dörrarna till i b. Dörren till a vänds p̊a detta sätt tv̊a g̊anger s̊a den är vänd
likadant efter processen.

2. Varje g̊ang n̊agon vänder p̊a dörrarna i b, men p̊a s̊a sätt r̊akar vända p̊a dörren till a, l̊at de
därefter g̊a in i a, fastna, vända p̊a dörren och g̊a tillbaka till b. Återgien vänds dörren tv̊a
g̊anger, vilket innebär att den är vänd åt samma h̊all som den var ursprungligen.

Detta bevisar lemmat.

Nu kan vi beskriva Ivar och Ravis stragegi: Om Ivar eller Ravi är innuti a s̊a g̊ar de ut (vilket
kan innebära att de behöver vända p̊a dörren dit). När varken Ivar eller Ravi är i a s̊a kollar de
om dörren till a är vänd rätt h̊all. Om den är det använder de Lemma 2 för att bli klara. Om
den inte är de s̊a m̊aste antingen Ivar eller Ravi ta sig dit och vända p̊a dörren. Vi kan anta utan
inskränkning p̊a problemet att dörren in i a är röd och att det därför är Ravi som m̊aste g̊a in i rum
a och vända p̊a dörren. För att ta sig till rummet kan de använda Lemma 2 och vända p̊a alla dörrar
s̊a att Ravi kan ta sig till a fr̊an vilket rum som helst (Detta är alltid möjligt eftersom det huset
är en sammanhängande trädgraf. ”Häng upp” grafen i a och m̊ala varje dörr s̊a att den röda sidan
hamnar ned̊at.). Ravi kan sedan g̊a till a, vända p̊a dörren och g̊a ut. Slutligen använder de Lemma
2 igen för att vända resten av dörrarna hur de vill. D̊a är de klara, och enligt induktionsprincipen
lyckas de oavsett storleken p̊a spökhuset.

13



Problem 11. L̊at k vara ett positivt heltal. L̊at S vara en oändlig mängd punkter i planet s̊adan
att alla slutna cirklar med radie 1 inneh̊aller högst k punkter i S. Visa att det finns en positiv
konstant C oberoende av k och S s̊adan att:

(a) Det finns en cirkel med radie r = 1 +
C

2k
som inneh̊aller högst k punkter i S.

(b) Det finns en cirkel med radie r = 1 +
C

k
som inneh̊aller högst k punkter i S.

Observera: Om du kan visa (b) behöver du inte ett separat bevis för (a). Om du har n̊agot resultat
som är starkare än (a) men svagare än (b), kan vi ge poäng för det.

Lösningsförslag. (b) Vi använder probabilistiska metoden. Introducera ett koordinatsystem. L̊at
A vara slumpmässigt vald punkt bland punkterna ΩA = {a ∈ S : |a| < M} där M är n̊agot stort
tal. L̊at slumpvariabeln X vara uniformt fördelad i cirkelskivan ΩX = {x ∈ R2 : |x| < M + 1}. A
är allts̊a diskret medan X är kontinuerlig. Varje cirkel med medelpunkt a ∈ ΩA och radie 1 är helt
innuti ΩX . För varje a ∈ ΩA gäller därmed

P (|X − a| ≤ 1) =
Area{x ∈ ΩX : |x− a| ≤ 1)}

Area(ΩX)
=

π

π(M + 1)2
=

1

(M + 1)2
.

Å andra sidan, för varje x ∈ ΩX gäller

P (|x−A| ≤ 1) =
#{a ∈ ΩA : |x− a| ≤ 1}

#ΩA
≤ k

#ΩA
.

Vi har p̊a s̊a vis visat att
1

(M + 1)2
= P (|X −A| ≤ 1) ≤ k

#ΩA
(5)

Anta nu att r är s̊adant att alla cirklar med radie r inneh̊aller åtminstone k + 1 punkter fr̊an S.
L̊at sedan slumpvariabeln Y vara uniformt fördelad i cirkelskivan {y ∈ R2 : |y| ≤M − r}. För varje
a ∈ ΩA f̊ar vi d̊a olikheten

P (|Y − a| ≤ r) =
Area{y ∈ ΩY : |y − a| ≤ r)}

Area(ΩY )
≤ πr2

π(M − r)2
=

r2

(M − r)2
.

Varje cirkel med mittpunkt y ∈ ΩY och radie r ligger helt innuti ΩA. S̊aledes gäller

P (|y −A| ≤ r) =
#{a ∈ ΩA : |y − a| ≤ r}

#ΩA
≥ k + 1

#ΩA
,

därav

r2

(M − r)2
≥ P (|Y −A| ≤ r) ≥ k + 1

#ΩA
. (6)

Division av (6) med (5) ger slutligen

r2
(M + 1)2

(M − r)2
≥ k + 1

k

vilket när M → ∞ blir

r2 ≥ 1 +
1

k
=⇒ r ≥

√
1 +

1

k
>

√
1 +

2

3k
+

1

9k2
= 1 +

1

3k
.

För alla r ≤ 1 + 1
3k finns allts̊a en cirkel med radie r som inneh̊aller som högst k punkter.
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