
HÖJDPUNKTEN 2024

Lösningsförslag - Gymnasietävling

Problem 1. Mio har 34
52

korvar och 92
72

korvbröd. Räcker korvbröden till alla korvar?
Anmärkning: potenstorn beräknas uppifr̊an ner. 22

3

betyder allts̊a 28 och inte 43.

Lösningsförslag. Antalet korvar är

34
52

= 34
25

= 32
50

.

Antalet korvbröd är

92
72

= 92
49

=
(
32
)249

= 32·2
49

= 32
50

.

Det finns allts̊a lika m̊anga korvar som korvbröd.
Svar: Ja, korvbröden räcker.
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Problem 2. Sebastian har 100 kulor i 10 olika färger, men det kan finnas olika m̊anga av de olika
färgerna. Han vill placera dem i 10 högar med 10 kulor i varje hög. Visa att han kan garantera att
det är max tv̊a olika färger i varje hög.

Lösningsförslag. Vi bevisar detta med induktion.
Basfall: Om Sebastian har 10 kulor i 1 färg kan han självfallet lägga alla i en hög utan fler än

tv̊a färger.
Induktionshypotes: Om sebastian har 10n kulor med n färger s̊a kan han lägga dem i n högar

med max tv̊a färger i varje hög.
Induktionssteg Om sebastian har 10(n+1) kulor med n+1 färger s̊a m̊aste det (enligt l̊adprincipen)

finnas n̊agon färg A som förekommer max 10 g̊anger, och n̊agon färg B om förekommer minst 10
g̊anger. Välj nu en hög med 10 kulor som best̊ar av alla kulor med färg A, och där resterande har
färg B. Efter det återst̊ar 10n kulor med n färger (eftersom alla kulor med färg A nu är borta).
Resterande kulor kan sorteras enligt v̊ar induktionshypotes.
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Problem 3. Ett hjul med radie R rullar uppför en trappa vars steg är kvadrater med sidlängd
r < R. Det är givet att R2 = 2r2. Hur många trappsteg behöver hjulet rulla upp för innan det
roterat ett helt varv?

Problem 3

Svar: 6

Lösningsförslag. Rita ut punkterna A, B och O som i bilden. Sträckorna AO och BO är radier till
cirkeln och har allts̊a b̊ada längden R. Sträckan |AB| hittas med pythagoras sats:

|AB|2 = r2 + r2 = R2. =⇒ |AB| = R.

Triangeln △ABO är allts̊a liksidig, vilket innebär att alla dess vinklar är 60◦ stora. Hjulet kommer
allts̊a rulla 60◦ varje steg. Ett helt varv är 360◦, det vill säga 6 steg.
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Problem 4. Visa att det finns oändligt med lösningar till ekvationen a!b! = c! där a, b och c är
heltal större än eller lika med 2.
Anmärkning: n! betecknar produkten av alla positiva heltal mindre än eller lika med n.

Lösningsförslag. L̊at a vara ett godtyckligt heltal större eller lika med 3. Sätt sedan c = a!, b = a!−1.
P̊a detta sätt blir

a!b! = a!(a!− 1)! = c(c− 1)! = c!.

Ytterligare blir b̊ade a, b, c ≥ 2. Vi f̊ar allts̊a en lösning för varje värde p̊a a, det vill säga oändligt
m̊anga lösningar.

Exempel:

Om a = 3: 3! · 5! = 6!

Om a = 4: 4! · 23! = 24!

Om a = 5: 5! · 119! = 120!
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Problem 5. Vilket är det största talet vars alla siffror är olika, och som är delbart med alla sina
siffror?

Svar: 9867312

Lösningsförslag. Först och främst s̊a vill vi s̊aklart ha ett tal med s̊a m̊anga siffror som möjligt. Vi
börjar med att visa att vi kan ha max 7 stycken siffror, och att dessa siffror i s̊a fall m̊aste vara
1, 2, 3, 6, 7, 8 och 9.

• Inget tal (utom 0) är delbart med 0. Allts̊a m̊aste vi definitivt ta bort 0.

• Om vi har med 5 m̊aste talet sluta p̊a 0 eller 5. Vi har redan tagit bort 0, och om det slutar
p̊a 5 är det udda s̊a vi m̊aste ta bort alla jämna siffror, vilket lämnar oss med endast 5 siffror.
Vi vill ha minst 7 siffror, s̊a vi m̊aste ta bort 5.

• Nu återst̊ar endast 8 siffror: 1, 2, 3, 4, 6, 7, 8, 9. Vi kan inte ha kvar alla dessa för deras siffersum-
ma är 40, vilket inte är delbart med 9 (och allts̊a kan inget tal med dessa siffror vara delbart
med 9, enligt delbarhetsregeln för 9). Om vi endast vill ta bort en siffra till s̊a m̊aste vi allts̊a
antingen ta bort 4 (för d̊a blir siffersumman 36 vilket är delbart med 9), eller s̊a tar vi bort 9
självt. I det senare fallet blir siffersumman dock 31 vilket inte är delbart med 3, s̊a det funkar
inte eftersom 3 fortfarande är kvar. Allts̊a m̊aste vi ta bort 4 om vi ska ha n̊agon chans att
hitta ett tal med 7 siffror.

Ovan har vi visat att vi antingen m̊aste ha färre än 7 siffror, eller siffrorna 1, 2, 3, 6, 7, 8, 9. L̊at oss
nu visa att det finns ett tal som best̊ar av dessa siffror som är delbart med alla sina siffror, och hitta
det största s̊adana talet.

Vi vill hitta ett tal som är delbart med 1, 2, 3, 6, 7, 8 och 9, och som har dessa siffror. Notera att:

• Alla tal är delbara med 1.

• Alla tal med dessa siffror är delbara med b̊ade 3 och 9 eftersom siffersumman är delbar med 9.

• Om vi lyckas se till att talet även är delbart med 7 och 8 s̊a f̊ar vi automatiskt att det även
är delbart med 2 och 6, eftersom delbarhet med 8 ger att talet är jämnt och delbarhet med 3
tillsammans med att det är jämnt ger att det är delbart med 6.

Vi kan allts̊a koncentrera oss p̊a att hitta tal med dessa siffror som är delbara med 7 och 8. Vi börjar
med 9876321, det största talet som best̊ar av dessa siffror, och provar sen alla möjligheter fr̊an störst
till minst tills vi hittar n̊agot som funkar. Vi f̊ar att alla möjliga jämna tal som börjar med 987 är:

9876312, 9876132, 9873612, 9873216,

9873162, 9873126, 9872316, 9872136,

9871632, 9871362, 9871326, 9871236.

och av dessa är det endast 9876312, 9873216, 9872136 och 9871632 som är delbara med 8. Men
ingen av dem är delbara med 7. Nästa tal vi provar blir d̊a 9867321 och 9867312 där det tidigare inte
funkar eftersom det är udda, och det senare är v̊art svar (det är enkelt att kolla att det är delbart
med b̊ade 7 och 8).
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Problem 6. Vad är heltalsdelen i talet 1
1 + 1

2 + . . .+ 1
19 + 1

20?

Lösningsförslag 1. L̊at s = 1
1 + 1

2 + · · ·+ 1
20 . Å ena sidan är

s = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ . . .+

1

8

)
+

(
1

9
+ . . .+

1

16

)
+

(
1

17
+ . . .+

1

20

)
> 1 +

1

2
+

2

4
+

4

8
+

8

16
+

4

20
= 3.2

där olikheten stämmer för att vi inom varje parentes gjorde termerna mindre (genom att göra
nämnarna större).

Å andra sidan är

s = 1 +
1

2
+

1

3
+

(
1

4
+

1

5

)
+

(
1

6
+

1

7

)
+

(
1

8
+ . . .+

1

11

)
+

(
1

12
+ . . .+

1

15

)
+

(
1

16
+ . . .+

1

20

)
< 1 +

1

2
+

1

3
+

2

4
+

2

6
+

4

8
+

4

12
+

5

16

= 3.5 +
5

16
< 4

där olikheten stämmer för att vi inom varje parentes gjorde termerna större (genom att göra
nämnarna mindre). Allts̊a är heltalsdelen 3.

Lösningsförslag 2. Betrakta integralen∫ 21

1

1

x
dx = [ln x]

21
1 = ln(21)

Det är arean under grafen till funktionen f(x) = 1
x mellan punkterna x = 1 och x = 21. Ett sätt

att uppskatta den arean är att summera arean av rektanglarna i bilden nedan. Om vi summerar de
röda rekanglarna s̊a f̊ar vi

1 +
1

2
+

1

3
+ . . .+

1

20

vilket är lite mer än arean under grafen. Om vi summerar de bl̊aa rekanglarna (endast tre av dem
är utritade, men mönstret fortsätter p̊a samma sätt) s̊a f̊ar vi

1

2
+

1

3
+ . . .+

1

21

vilket är lite mindre än arean under grafen.

Problem 6
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Med andra ord har vi att

ln(21) < 1 +
1

2
+ . . .+

1

20
< ln(21) + 1− 1

21

Det visar sig att detta ger

3.04 < 1 + . . .+
1

20
< 3.997

s̊a heltalsdelen är 3. Detta är dock s̊aklart mycket sv̊art att räkna ut utan en miniräknare! Ett bättre
sätt att använda denna metod om man saknar miniräknare vore att räkna ut till exempel

1 +
1

2
+ . . .+

1

6
= 1.95 +

1

3
+

1

6
= 2.45

exakt, och sen använda integralen∫ 21

7

1

x
dx = ln(21)− ln(7) = ln(3)

för att uppskatta summan av de resterande termerna. Vi f̊ar med samma metod som ovan att

2.45 + ln(3) < 1 +
1

2
+ . . .+

1

20
< 2.45 +

(
ln(3) +

1

7
− 1

21

)
= 2.45 + ln(3) +

2

21
< 2.55 + ln(3)

Till sist noterar vi att ln(3) > 1 eftersom 3 > e och att ln(27) < log2.5(27) < 4 eftersom 2.5 < e och
2.54 > 62 > 27. Det följer att 4

3 > ln(3) > 1 vilket ger

3.45 < 1 +
1

2
+ ...+

1

20
< 2.55 +

4

3
< 4

s̊a heltalsdelen är 3, vilket skulle visas.

Anmärkning. Det finns massor av kluriga sätt att räkna ut heltalsdelen av denna summa genom
att göra olika uppskattningar som är betydligt mer effektiva än integralmetoden, för det här specifika
problemet i alla fall. Vi har med integrallösningen änd̊a eftersom det är ett exempel p̊a en mycket
effektiv metod för att uppskatta m̊anga typer av summor även när antalet termer blir stort! Integral-
metoden ger oss en bra uppfattning om vad summan 1+ 1

2 + . . . 1
n är även om n är mycket större än

20 - nämligen ungefär ln(n). Faktum är att vi här har visat att summan alltid är mellan ln(n+ 1)
och ln(n+1)+1− 1

n+1 , vilket för stora n ger oss att summan är mellan ln(n+1) och ln(n+1)+1.
Felet är allts̊a mindre än 1. Det visar sig att när n blir större och större s̊a kommer avst̊andet fr̊an
summan till ln(n) att närma sig en konstant som kallas för Euler–Mascheronikonstanten, och vars
värde är ungefär 0.58.
Det kan ocks̊a nämnas att man kan f̊a en ännu bättre uppskattning av integralen genom att räkna
areorna av parallelltrapetsen med hörn i punkterna

(n, 0), (n+ 1, 0) p̊a x−axeln, samt (n,
1

n
), (n+ 1,

1

n+ 1
) p̊a grafen

Summan av deras areor fr̊an 1 till n är

n−1∑
m=1

1

2

(
1

m
+

1

m+ 1

)
=

(
n∑

m=1

1

m

)
− 1

2
− 1

2n

s̊a vi f̊ar att
n∑

m=1

1

m
≈ ln(n) +

1

2
+

1

2n

men detta är fortfarande en liten överskattning av arean, s̊a en underskattning av summan:

n∑
m=1

1

m
> ln(n) +

1

2
+

1

2n

Eftersom Euler-Mascheronikonstanten är 0.58 s̊a vet vi dock att det är en mycket liten underskattning
(ungefär storlek 0.08 för stora n).
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Problem 7. Givet är en konvex hexagon ABCDEF där motsatta sidor är parallella. Visa att de
tre diagonalerna AD, BE och CF skär varandra i en punkt om och endast om motsatta sidor är
lika l̊anga (allts̊a AB = DE, BC = EF och CD = FA).

Problem 7

Lösningsförslag. Del 1: Lika l̊anga sidor =⇒ diagnoaler sammanfaller.
Anta att motst̊aende sidor är lika l̊anga. Börja med att rita in AD och FC samt vinklarna α, β,

γ och δ som i bilden. Eftersom AF och CD är parallella s̊a m̊aste α = γ och β = δ (alternatvinklar).
Enligt vinkel-sida-vinkel innebär detta att trianglarna △AFM och △CDM är kongruenta. FC delar
allts̊a upp AD i tv̊a lika l̊anga delar AM och MD. Av samma anledningar delar ocks̊a BE upp AD
i tv̊a lika l̊anga delar. BE och FC korsar allts̊a AD i samma punkt.

Del 2: Diagonaler sammanfaller =⇒ Lika l̊anga sidor.
Anta att AD, BE och CF skär varandra i en punkt M . Precis som innan f̊ar vi att ∠FAM =

∠CDM och ∠AFM = ∠DCM , vilket innebär att △AFM ∼ △DCM och därmed AM
DM = FM

CM .

P̊a liknande sätt kan vi visa att FM
CM = EM

BM och EM
BM = DM

AM . Sätter vi ihop dessa likheter f̊ar vi

AM

DM
=

FM

CM
=

EM

BM
=

DM

AM

vilket endast kan stämma om AM = DM . Trianglarna △AFM och △DCM är allts̊a kongruenta,
därmed AF = CD. Av motsvarande anledningar är BA = DE och CB = EF , vilket skulle visas.
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Problem 8.

(a) Tilda har en rektangulär bräda som är 1 meter bred och 2,25 meter l̊ang. Visa att hon kan
s̊aga isär den i tv̊a delar som kan sättas ihop till en kvadrat.

(b) Visa att det finns oändligt m̊anga tal x s̊adana att en 1m × xm bräda kan s̊agas isär i tv̊a
delar och sättas ihop till en kvadrat.

Lösningsförslag. Del (a): Observera att 2.25 = 9/4. Brädan kan allts̊a delas upp i ett 9 × 4 rutnät
av kvadrater. Den kan sedan byggas om till en kvadrat enligt figuren nedan:

Problem 8.a - lösning

Del (b): Fr̊an en kvadrat kan man skapa en rektangel med följande metod:

1. Dela upp kvadraten i ett n× (n+ 1) rutnät.

2. Rita en trappa längs rutnätet som delar upp kvadraten i tv̊a lika stora delar.

3. Flytta ner den översta delen ett trappsteg.

Den resulterande rektangeln best̊ar d̊a av ett n×(n+1) rutnät av n×(n+1) rutor. Dessa förh̊allandet

mellan dess sidor blir därmed (n + 1)2 : n2. Om vi sätter x = (n+1)2

n2 för n̊agot heltal n s̊a kan vi
utföra samma process baklänges och p̊a s̊a vis transformera en 1 × x rektangel till en n+1

n × n+1
n

kvadrat. Vi f̊ar allts̊a följande följd av möjliga värden p̊a x:

4

1
,
9

4
,
16

9
,
25

16
,
36

25
, . . .

(n+ 1)2

n2
, . . .

Problem 8.b - processen med n = 3
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Problem 9. Ruth är en rätblockssamlare som bara samlar p̊a rätblock med volym n och vars alla
kanter har heltalslängder. En dag tog hon fram alla sina rätblock, och la dem p̊a en l̊ang rad. Hon la
d̊a märke till ett lustigt sammanträffande: när hon kollade p̊a rätblocken uppifr̊an s̊ag de alla ut som
rektanglar och inga av dem var kongruenta med varandra! Dessutom var ingen av dem en kvadrat.
Visa att Ruth omöjligen kan ha fler än n rätblock.

Lösningsförslag 1. För att rätblocken ska ha volym n s̊a m̊aste toppsidan av varje rätblock ha en
area som delar n. Problemet kan allts̊a omformuleras till: “Visa att det inte finns fler än n talpar
(a, b) s̊adana att a < b och ab | n”.

L̊at antalet delare till n vara D. Det finns exakt D(D−1)
2 stycken par av delare (a, b) s̊adana att

a < b. Betrakta nu för tv̊a delare a < b de tv̊a paren(
a, b
)

samt
(n
b
,
n

a

)
Om ab | n s̊a m̊aste ab ≤ n, vilket ger att

n

b
· n
a
=

n2

ab
≥ n

Allts̊a har vi antingen att

• Max ett av paren har en produkt som delar n; eller

• ab = n.

Det finns exakt ⌊D
2 ⌋ stycken par av delare a < b s̊adana att ab = n, s̊a vi f̊ar som mest

1

2

D(D − 1)

2
+

D

4
=

D2

4

stycken fungerande par. Slutligen använder vi att D ≤ 2
√
n vilket exakt ger olikheten vi vill ha.

Lösningsförslag 2. Denna lösning inkom fr̊an en av deltagarna i tävlingen!
Som tidigare noterar vi att problemet är ekvivalent med att visa att det finns som mest n stycken
par av tal a < b s̊adana att ab | n. L̊at d(m) vara antalet delare till m. För varje val av a finns det
d(n/a) val av b som ger att ab | n. Totalt finns allts̊a

∑
m|n d

(
n
m

)
stycken par av tal (a, b) s̊adana

att ab | n, och av dessa gäller för max hälften att a < b. Det räcker allts̊a att visa att

1

2

∑
m|n

d
( n

m

)
=

1

2

∑
m|n

d(m)
(?)

≤ n =
∑
m|n

φ(m)

där den sista likheten är en (ganska) välkänd identitet för Euler’s fi-funktion ϕ. Vi är allts̊a klara
om vi kan visa att d(m) ≤ 2φ(m) för alla m ∈ N. Notera att

• d(2α) = α+ 1 ≤ 2α = 2φ(2α) där olikheten följer fr̊an induktion med basfall α = 1

• d(pα) = α+ 1 ≤ 2 · 3α−1 ≤ (p− 1) · pα−1 = φ(pα) för primtal p > 3, där första olikheten följer
fr̊an induktion med basfall α = 1

Eftersom b̊ade d och φ är multiplikativa funktioner s̊a ger detta att

d(2α1 · pα2
2 · ... · pαk

k ) = d(2α1)d(pα2
2 )...d(pαk

k ) ≤ 2φ(2α1)φ(pα2
2 )...φ(pαk

k ) = 2φ(2α1 · pα2
2 · ... · pαk

k )

vilket är exakt vad vi ville visa.

10



Problem 10. Kevin har en p−sidig tärning för varje primtal p mindre än 42. Visa att han kan
simluera en 42−sidig tärning (dvs välja ett heltal mellan 1 och 42 s̊a att sannolikheten är samma
för alla) med endast:

(a) Tre tärningskast.

(b) Tv̊a tärningskast.

Lösningsförslag. Sl̊a först en 41-sidig tärning och l̊at a vara talet du f̊ar.

• Om a ≤ 6, sl̊a en 7-sidig tärning och kalla svaret b. Sätt x = 7(a− 1) + b.

• Om 7 ≤ a ≤ 21, sl̊a en 3-sidig tärning och kalla svaret b. Sätt x = 3(a− 7) + b.

• Om a ≥ 2, sl̊a en 2-sidig tärning och kalla svaret b. Sätt x = 2(a− 22) + b

I var och en av de tre fallen blir sannolikheten för varje tal mellan 1 och 42 lika. Detta simulerar
allts̊a en 42-sidig tärning.

Illustration av lösningen till problem 10.
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Problem 11. Ivar och Ravi bor i ett stort spökhus som best̊ar av n stycken rum. Varje rum har ett
antal dörrar som leder till andra rum. Totalt finns det n − 1 dörrar, och det är möjligt att g̊a fr̊an
vilket rum som helst till vilket annat rum som helst genom en serie dörrar.
En dag bestämmer sig husets spöken för att göra alla dörrar enkelriktade! Varje dörr färgas röd p̊a
ena sidan och indigo p̊a andra sidan, och för att se till att Ivar och Ravi inte kan h̊alla ihop ser
spökena till att Ivar bara kan g̊a genom indigo-färgade dörrar medan Ravi bara kan g̊a genom röda
dörrar.
Eftersom spökena inte vill vara allt för elaka, s̊a gav dem Ivar och Ravi möjligheten att vända p̊a
dörrar s̊a att färgerna byter plats, men bara enligt vissa regler. Man f̊ar bara vända p̊a en dörr om
man är i ett rum som man inte kan lämna för att alla dörrar har fel färg, och man m̊aste i s̊a fall
vända p̊a alla dörrar i det rummet p̊a en g̊ang! Visa att, oavsett hur spökena färgade dörrarna och
oavsett vilka rum Ivar och Ravi är i fr̊an början, s̊a kan Ivar och Ravi g̊a runt i huset och vända p̊a
dörrarna s̊a att vilken färg-konfiguration som helst uppn̊as.

Lösningsförslag. Vi gör induktion p̊a antalet rum. I basfallet finns ett rum och inga dörrar, och d̊a
är resultatet uppenbart. Anta nu att p̊ast̊aendet är sant när spökhuset inneh̊aller k rum. Vi ska visa
att det s̊a ocks̊a m̊aste vara sant när spökhuset inneh̊aller k + 1 rum. Betrakta därmed ett spökhus
G med k+1 rum. Om alla rum hade tv̊a eller fler dörrar s̊a hade det funnits åtminstone k+1 dörrar
totalt. Men det finns bara k dörrar. Allts̊a m̊aste det finnas åtminstone ett rum som har exakt en
dörr. Välj ett godtyckligt s̊adant rum och kalla det för a.

Lemma 1. Om Ivar och Ravi är utanför a s̊a kan de vända p̊a alla dörrar utom dörren till a hur de
vill, och de kan göra detta s̊a att dörren till a är vänd likadant när de är klara som när de började.

bevis. Ifall a och dörren till a inte fanns s̊a hade huset haft k rum och k − 1 dörrar. Enligt induk-
tionshypotesen finns det allts̊a en sekvens drag som l̊ater Ivar och Ravi vända p̊a alla dörrar åt rätt
h̊all. Om Ivar och Ravi utför dessa drag i huset med k + 1 dörrar kan dock n̊agon r̊aka vända p̊a
dörren till a. Dessutom, om n̊agon vill vända p̊a alla dörrarna fr̊an b s̊a kan dörren till a förhindra
dem fr̊an att göra detta. Dessa problem kan dock lösas med följande justeringar av strategin:

1. Varje g̊ang n̊agon skulle ha vänt dörrarna i b men stoppas p̊a grund av dörren till a, l̊at dem
istället g̊a in i a, fastna, vända p̊a dörren, och g̊a tillbaka till b. Därefter kommer personen
kunna vända p̊a dörrarna till i b. Dörren till a vänds p̊a detta sätt tv̊a g̊anger s̊a den är vänd
likadant efter processen.

2. Varje g̊ang n̊agon vänder p̊a dörrarna i b, men p̊a s̊a sätt r̊akar vända p̊a dörren till a, l̊at de
därefter g̊a in i a, fastna, vända p̊a dörren och g̊a tillbaka till b. Återgien vänds dörren tv̊a
g̊anger, vilket innebär att den är vänd åt samma h̊all som den var ursprungligen.

Detta bevisar lemmat.

Nu kan vi beskriva Ivar och Ravis stragegi: Om Ivar eller Ravi är innuti a s̊a g̊ar de ut (vilket
kan innebära att de behöver vända p̊a dörren dit). När varken Ivar eller Ravi är i a s̊a kollar de om
dörren till a är vänd rätt h̊all. Om den är det använder de Lemma 1 för att bli klara. Om den inte är
de s̊a m̊aste antingen Ivar eller Ravi ta sig dit och vända p̊a dörren. Vi kan anta utan inskränkning
p̊a problemet att dörren in i a är röd och att det därför är Ravi som m̊aste g̊a in i rum a och
vända p̊a dörren. För att ta sig till rummet kan de använda Lemma 1 och vända p̊a alla dörrar s̊a
att Ravi kan ta sig till a fr̊an vilket rum som helst (Detta är alltid möjligt eftersom det huset är
sammanhängande. Vänd varje dörr s̊a att dess indigosida pekar mot rummet närmast a). Ravi kan
sedan g̊a till a, vända p̊a dörren och g̊a ut. Slutligen använder de Lemma 1 igen för att vända resten
av dörrarna hur de vill. D̊a är de klara, och enligt induktionsprincipen lyckas de oavsett storleken
p̊a spökhuset.
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