
Open Competition 2025

Solutions

Problem 1. A rectangle is partitioned into n smaller rectangles which are to be painted in different
colors. In preparation, strips of tape need to be placed covering all of the edges of the rectangles
such that no two strips of tape cross. What is the fewest number of strips of tape needed?

Solution. We claim that the minimal number of tape pieces required is n+ 3.
Consider an arrangement of tape which covers all of the edges of the rectangles and which uses as

few tape pieces as possible. For such an arrangement, each end of a tape piece will lie in a three-way
intersection, a four-way intersection or in one of the large rectangle’s four corners.

By each three- and four-way intersection there are exactly twice as many rectangle corners as
tape piece ends present. Moreover, by each one of the large rectangle’s four corners there are exactly
two tape piece ends present.

Since there are exactly 4n rectangle corners in total, and each tape piece has two ends, an
arrangement of tape using as few tape pieces as possible will always use exactly

1

2

(
1

2
(4n− 4) + 2 · 4

)
= n+ 3

tape pieces, which was what we wanted to show.

1



Problem 2. Let n and k be positive integers with n ≥ max{k, 3}. Alice and Bob play a game on an
(undirected and simple) graph G. At the start of the game, G is a complete graph on n nodes. Each
round, Alice first selects k edges in G, and then Bob removes one of the edges Alice had selected.

The game ends when G only has n−1 edges left. Then Alice wins if G is connected and otherwise
Bob wins. What is the largest positive integer k, in terms of n, for which Alice wins if both players
play optimally?

Solution. We claim that the largest positive integer k for which Alice always wins is k = 3, given
that both players play optimally.

Lemma 1. Alice wins if k ≤ 3.

Proof of Lemma 1. It is well-known that an (undirected and simple) graph on n nodes with more
than n− 1 edges contains at least one cycle.

Thus, on her turn, Alice can always choose k ≤ 3 edges from the same cycle c in G. When Bob
removes one of these edges, e, the resulting graph will still be connected. This holds since if two
nodes are connected by a path before e was removed it will either be the case that (1) the same
path still connects them after e is removed, or (2) if e was part of the path then e can be replaced
by the remaining edges in c to form a new path connecting the nodes.

Therefore Alice can guarantee her victory when k ≤ 3.

Lemma 2. Bob wins if k > 3.

Proof of Lemma 2. Let Bob choose a triangle T in G at the start of the game. This is possible
because G is a complete graph on n nodes at that time.

On his turn, Bob can always preserve T by removing one of the at least k − 3 ≥ 1 many edges
picked out by Alice which are not part of T .

When there are only n − 1 edges left in the graph, the triangle T will still be preserved. But a
graph on n nodes and n− 1 edges cannot be connected if it contains a cycle, in this case T .

Therefore Bob can guarantee his victory when k > 3.

Hence, Bob wins when k > 3 and Alice wins when k ≤ 3. Thus, k = 3 is the largest possible k
for which Alice wins.
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Problem 3. A frog is at the point (0, 0) in the plane and starts jumping. Its first jump has length
1, and each subsequent jump is twice as long as the previous one. Every jump is made parallel to
one of the coordinate axes. Which points can the frog reach by jumping in this way?

Solution. Notice that the frog is only able to reach points whose integer coordinates (x, y) satisfy
that x+ y is odd. We claim that the frog can reach all of these points.

Lemma 1. Let n ∈ N. The frog can jump to all points (x, y) with integer coordinates such that
x+ y is odd and |x|+ |y| ≤ 2n − 1 in exactly n jumps.

Proof of Lemma 1. We will prove the lemma by induction on n.
Base case (n = 1): On its first jump, the frog can jump to (1, 0), (0, 1), (−1, 0) or (0,−1), which

encompasses all points (x, y) with integer coordinates such that x+ y is odd and |x|+ |y| ≤ 21 − 1.
Induction step (n > 1): Notice that the frog can jump to all points (x′, y′) with integer coordi-

nates such that x′ + y′ is odd and |x′|+ |y′| ≤ 2n−1 − 1 using exactly n− 1 jumps. Consider a point
(x, y) with integer coefficients such that x + y is odd and |x| + |y| ≤ 2n − 1. We have x ̸= y since
x+ y is odd. By symmetry, we can assume that x > y ≥ 0. The point (x− 2n−1, y) is then odd since
n > 1. We have{

x ≥ 2n−1 ⇒ |x− 2n−1|+ |y| = x− 2n−1 + y ≤ 2n − 1− 2n−1 = 2n−1 − 1

x < 2n−1 ⇒ |x− 2n−1|+ |y| = 2n−1 − x+ y = 2n−1 − (x− y) ≤ 2n−1 − 1.

By the induction hypothesis, the frog can reach (x−2n−1, y) after exactly n−1 moves and can thus
reach (x, y) after exatcly n jumps (the n:th jump is of length 2n−1). Thus, we have shown that the
frog can jump to all points (x, y) with integer coordinates such that x+y is odd and |x|+ |y| ≤ 2n−1
using exactly n jumps, which implies the induction step.

Therefore the set of points to which the frog can jump to is exactly the set of points (x, y) with
integer coordinates such that x+ y is odd.
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Problem 4. A stick of length 1 is split between a countable number of people P1, P2, . . . . First,
P1 chooses a number U1 uniformly from [0, 1] and the stick is split in a piece of length U1 and a
piece of length 1 − U1. P1 keeps the stick of length U1 and passes to P2 the remaining piece. P2

then chooses U2 uniformly from [0, 1], and splits the stick into two pieces of length U2(1− U1) and
(1 − U2)(1 − U1). The first piece is kept by P2 and the other stick is given to P3, and the process
continues so that Pn recieves a stick of length Un(1 − Un−1) . . . (1 − U1). What is the probability
that the stick that every person recieves is shorter than 1/2?

Solution. The answer is 1− ln 2.
The function f : [0, 1] → [0, 1] is defined to be such that f(x) is the sought-after probability for

the corresponding problem where the stick has length x instead. If x < 1
2 , then no piece can be

longer than 1
2 and if x > 1

2 we can use the law of total probability for U1. Therefore, we get that

f(x) =

{
1, x < 1

2
1
x

∫ x

x− 1
2
f(t) dt, x ≥ 1

2

.

For x ≥ 1
2 , after multiplication by x and differentiating, we get that

f(x) + xf ′(x) = f(x)− f(x− 1
2 ) =⇒ xf ′(x) = −1

so f(x) = c − lnx for x ≥ 1
2 . The constant c is determined by 1 = f( 12 ) = c + ln 2, so f(x) =

1− ln 2− lnx. The sought after value is f(1) = 1− ln 2.
Comment: The function f(x) above is a rescaled version of the so-called “Dickmann function”

ρ(x) = f(2x) which appears in many different situations. For example, if n is chosen uniformly at
random from the integers between 1 and N for some large integer N , then ρ(x) approximates the

probability that ρmax(n) < n
1
x , where ρmax(n) denotes the largest prime factor of n. For 1 < x < 2

the relation ρ(x) = 1− lnx holds, but for x > 2 there is no general closed form for ρ.
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Problem 5. Lisa the astronaut is constructing humanity’s first vegetable plantation on planet
Mars. She is building it out of a grid of hexagonal plantation modules whose side lengths are all 1
meter long. Right above the middle of the middle plantation module, she places a light source that
illuminates all modules within a circle of radius 100m. For a plantation module to work properly,
it must be completely illuminated. Given that Lisa has filled the illuminated circle with as many
plantation modules as possible, determine the perimeter of the plantation.

Solution. Place the light source at the origin and let u, v and w be three vectors which point to
three pairwise non-adjacent corners of the centermost hexagon. Notice that every hexagon in the
grid has its center at a point which can be expressed as au + bv + cw where a, b, c are integers
with 3 | a+ b+ c. In particular, there are six hexagons with centers at ±99u, ±99v and ±99w and
these hexagons are tangent to the illuminated circle in the points ±100u, ±100v and ±100w, which
by symmetry partition the circumference of the plantation into six congruent “paths”. All these
“paths” have the same length, so it suffices to compute the length of one of them and then multiply
the result by 6.

Consider the path from A := 100u to B := −100v whose total displacement is 100w. This path
will consist of unit length steps, each one in one of the directions ±u, ±v or ±w. However, notice
that the only steps that may appear in the path are steps which takes the path closer to B, i.e.
w-steps, (−u)-steps and (−v)-steps. Moreover, each w-step must either be followed by a (−u)-step
or a (−v)-step and in the same way every (−u)-step or (−v)-step must be followed by a w-step.
Therefore, every other step is a w-step and every other step is a (−u)-step or a (−v)-step. Each
(−u)-step and (−v)-step takes the path one half w-step in the w-direction, so for the path to consist
of a total displacement of 100 steps in the w-direction we must have that it consists of 67 w-steps and
66 (−u or −v)-steps. Therefore, the total number of steps around the plantation is 6·(66+67) = 798.
Answer: 798m
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Problem 6. Let ABC be a scalene triangle with incenter I and circumcircle Ω. Let M be the
midpoint of arc BC on Ω containing A. Let D be the intersection of lines BC and AM . Let J be
the second intersection of line DI with the circumcircle of triangle BIC. Prove that the tangent to
the circumcircle of triangle BIC at J bisects segment DM .

Solution. Let L be the midpoint of segment DM and denote by ω the circumcircle of triangle BIC.
We show that the line LJ is tangent to ω.

From Power of a point at D we get

DA ·DM
Ω
= DB ·DC

ω
= DI ·DJ

so M , A, I, and J lie on a circle, which we denote Γ. This now implies that

∠MJD = ∠MJI = ∠MAI = 90◦

where the last equality follows from the incircle-excircle lemma, so L is the circumcenter of the
right-angled triangle DML which gives that LM = LJ = LD. We now present two ways of finishing
the proof:

Method 1: Let IA be the A-excenter of triangle ABC. Recall that IA lies on line AI and that
IAI is a diameter of ω. Since ∠IJM = ∠IAJI = 90◦, the points M,J, IA all lie on a line, which we
denote by ℓ. Now

∠IAJL
ℓ
= ∠MJL = ∠LMJ = ∠AMJ

Γ
= ∠AIJ = ∠IAIJ

so LJ is tangent to ω by the tangent-secant theorem. This finishes the proof.

Method 2: Let N be the point on Ω diametrically opposite M - from the incircle-excircle lemma,
N is the center of ω, so we wish to prove that ∠NJL = 90◦. The inscribed angle and tangent-secant
theorems give that

∠ALJ = 2∠ADJ = 2∠LDJ = 2∠DJL = 2∠ICJ = ∠INJ = ∠ANJ

so L,A, J,N are cyclic. But ∠NAL = 90◦ since N lies on the line AI, so ∠NJL = 90◦ as desired.

A

B

C

I

M

D

J

IA

L
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Problem 7. Let n be a positive integer. Oscar receives a bag containing n distinct positive integers
and writes on a board all possible numbers of the form xy+ z, where x, y and z are (not necessarily
distinct) numbers from the bag. Given n, determine the minimum number of distinct numbers that
Oscar may have written on the board.

Solution. For a set S of n positive integers, let

T (S) = {xy + z | x, y, z ∈ S}.

We claim that the smallest possible size of T (S) is n2 + n− 1.

Lemma 1. If S = {1, . . . , n} then |T (S)| = n2 + n− 1.

Proof of Lemma 1. If S = {1, . . . , n} then it is clear that T (S) = {2, . . . , n2+n}. Thus we have that
|T (S)| = n2 + n− 1, which was what we wanted to prove.

Lemma 2. For all sets S of n positive integers it holds that |T (S)| ≥ n2 + n− 1.

Proof of Lemma 2. Let e be the smallest element of S and let E be the largest element of s.
We claim that all numbers of the forms

(i) xE + z, where x, z ∈ S, and

(ii) e2 + z, where z ∈ S\{E}

are pairwise distinct. This claim can be shown by considering the following cases:

• If x1E+ z1 = x2E+ z2 we get that z1 = z2 by considering the equation modulo E. Thereafter
we immediately get that (x1, z1) = (x2, z2).

• If e2 + z1 = e2 + z2 we must have that z1 = z2.

• Notice that e2 + z1 < e2 + E ≤ eE + e ≤ xE + z2 for all x, z2 ∈ S, z1 ∈ S\{E}.

Since there are n2 numbers of the form (i) and and n − 1 numbers of the form (ii) in T (S), it
follows that |T (S)| ≥ n2 + n− 1 for all sets S of n positive integers.

Therefore the minimum number of distinct numbers that Oscar may have written on the board
is equal to n2 + n− 1.
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Problem 8. Find all functions f : N → N satisfying that

d

(
N∑
i=1

ai

)
≤ d

(
N∑
i=1

f(ai)

)

for all N , a1, . . . , aN ∈ N. (Here, d(n) denotes the number of divisors of n.)

Solution. We claim that the family of solutions f(n) = cn, where c is any constant positive integer,
constitutes the set of possible solutions to the given functional equation. It is obvious that all these
functions satisfy the functional equation.

Lemma 1. If x and y are positive integers such that

d(Nx) ≤ d(Ny)

for all N ∈ N, then x | y.

Proof of Lemma 1. Let x and y be positive integers with x ∤ y. We will show that there exists some
N ∈ N for which d(Nx) > d(Ny).

Because x ∤ y there exists a prime p such that νp(x) > νp(y).
Consider N = yEp−Eνp(y) for any positive integer E. Then

d(Nx)

d(Ny)
≥ νp(x) + 1

νp(y) + 1

∏
q|y
q ̸=p

(Eνq(y) + νq(x) + 1)

((E + 1)νq(y) + 1)
.

Since the right-hand side tends to
νp(x)+1
νp(y)+1 > 1 as E approaches ∞, there exists some E for which

the right-hand side is larger than 1. Hence, we get that

d(Nx)

d(Ny)
> 1

which was what we wanted to show.

By applying Lemma 1 to the functional equation we get that

N∑
k=1

ak

∣∣∣ N∑
k=1

f(ak)

for alla N, a1, . . . , aN ∈ N.
Therefore, we must have n | f(n) for each n ∈ N. Let g(n) = f(n)

n . Hence, for all A,n ∈ N, we
have that

An+ 1 | Af(n) + f(1)

An+ 1 | An · g(n) + g(1)

An+ 1 | −g(n) + g(1)

so g(1)− g(n) has infinitely many divisors and must therefore equal 0.
Thus, all solutions to the functional equation satisfy that f(n) = cn for all n ∈ N, for some fixed

c ∈ N, as desired.
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Problem 9. Let a1, a2, a3, . . . , be an infinite sequence of distinct positive integers, and let N be
a positive integer. Suppose that, for each integer n > N , an is equal to the smallest positive integer
which cannot be written as a sum of distinct elements of {a1, . . . , an−1}.

Prove that there exists a positive integer M such that am = 2am−1 for all m > M .

Solution 1. Let Sm = a1 + ...+ am and let xm = Sm + 1− am+1. Note that

• xm ≥ 0 since we definitely can’t express Sm + 1 as a sum of the numbers from {a1, ..., am},
and so am+1 ≤ Sm + 1

• xm − xm+1 = am+2 − 2am+1 ≥ 0, since you can write any number from 0 to am+1 − 1 using
only the numbers a1, ..., am and so you can write any number between am+1 and 2am+1 − 1
by adding am+1, implying that am+2 is at least 2am+1

But the two observations above show that xm is a non-increasing sequence of positive numbers, and
hence it’s eventually constant. And when it’s constant, we must have am+2 = 2am+1.

Solution 2. Let An denote the set {a1, . . . , an} and let Sn =
∑n

k=1 ak for each n ∈ N. Furthermore,
let χn denote the set of positive integers less than or equal to Sn which cannot be written as a sum
of elements in the set An.

For each n ≥ N , notice that

an+1 =

{
Sn + 1 if χn = ∅
min(χn) otherwise

.

Notice that the sequence (an) is unbounded. Therefore we can choose a positive integer M such
that M > N and aM > SN .

Lemma 1. For each n > N it holds that an+1 ≥ 2an.

Proof of Lemma 1. That an is equal to the least positive integer which cannot be written as a sum
of elements in the set An−1 implies that all positive integers in the set {1, . . . , an−1} can be written
as a sum of elements in the set An−1. Therefore, all positive integers in the set

{1, . . . , an − 1} ∪ {an} ∪ {an + 1, . . . , an + (an − 1)}

can be written as a sum of elements in the set An.
Therefore we must have that an+1 > an + (an − 1) =⇒ an+1 ≥ 2an for each n > N .

Lemma 2. For all positive integers b and n it holds that b ∈ χn ⇐⇒ Sn − b ∈ χn.

Proof of Lemma 2. It suffices to prove that b /∈ χn =⇒ Sn − b /∈ χn for all b < Sn.
If b /∈ χn, then b is equal to the sum of elements in a subset B of An. Thus, notice that Sn − b

is equal to the sum of elements in the subset An\B of An, and therefore Sn − b /∈ χn.

Lemma 3. For each m ≥ M it holds that χm = ∅ and am+1 = 2am.

Proof of Lemma 3. From Lemma 1 it follows that

Sm = SN + (aN+1 + · · ·+ am) < aM +
( am+1

2m−N
+ · · ·+ am+1

21

)
< 2am+1.

Suppose that χm ̸= ∅, so am+1 = min(χm). Moreover, we have that Sm − am+1 ∈ χm from
Lemma 2. Combining this with the inequality above we deduce that

am+1 = min(χm) ≤ Sm − am+1 < am+1

which is a contradiction.
Therefore we must have that χm = ∅ for each m ≥ M . Thus we get that

am+1 = Sm + 1 = (Sm−1 + am) + 1 = 2am

which was what we wanted to prove.

From Lemma 3 we have that am = 2am−1 for all m > M , as desired.
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Problem 10. Let P be a non-constant polynomial with integer coefficients and positive leading
coefficient. For each positive integer n, prove that there exists a positive integer c such that P (x)+ c
is prime for at least n different integers x.

Solution. We can replace P (x) by P (x− a) + b for whatever integers a and b we please and prove
the problem for the resulting polynomial instead. Therefore, we may (without loss of generality)
assume that P (1) = 0 and that P (x) is strictly increasing for x > 0.

Consider the function
Q̃(m) = max

1≤i≤m
(P (i+ 1)− P (i))

for m ∈ N.
Notice that Q̃(m) > 0 since P (x) is strictly increasing for x > 0. Furthermore, notice that for all

sufficiently large m ∈ N we will have that Q̃(m) = P (m+ 1)− P (m).
For each m ∈ N, consider the sets

Sm = {P + 1, . . . , P + Q̃(m)}

and
Lm = {p(k) | k ∈ N, p ∈ Sm}.

Since P (k+1)−P (k) ≤ Q̃(m) for each integer 1 ≤ k ≤ m, it must be the case that every integer
between 1 = P (1) + 1 and P (m+ 1) + Q̃(m) will appear in Lm.

Consider what happens when m ∈ N tends towards ∞. From the Prime Number Theorem we

get that there will be Θ
(

P (m+1)+Q̃(m)

log(P (m+1)+Q̃(m))

)
= Θ

(
md

log(m)

)
primes between 1 and P (m+ 1) + Q̃(m).

Then Lm will contain at least Ω
(

md

log(m)

)
primes. Notice that |Sm| = Θ(Q̃(m)) = Θ(md−1). By the

pigeonhole principle we therefore get that there exists a polynomial p ∈ Sm such that p(k) is a prime

for eat least Ω
(

md

log(m)

/
md−1

)
= Ω

(
m

log(m)

)
different integers k.

Thus, for all sufficiently large m ∈ N, there will exist some polynomial p ∈ Sm such that p(k) is
a prime for at least n different positive integers k, which was what we wanted to show.
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Problem 11. Let ABC be a triangle with incenter I and circumcircle Ω. Let the reflection of line
BC over line AI intersect Ω at points P and Q. Prove that the circumcenter of triangle PIQ lies
on Ω.

Solution 1. Let IA be the A-excenter of triangle ABC, let M be the second intersection of line
AI with Ω, and let D be the intersection between line AI and side BC. Let O be the circumcenter
of triangle ABC and let O′ be the circumcenter of triangle PIQ. Let ω denote the circumcircle of
triangle BIC and let Γ denote the circumcircle of triangle PIQ. From the incircle-excircle lemma,
IA lies on ω and M is the circumcenter of ω.

If AB = AC, then O′ = M clearly lies on Ω. Moving forward we may therefore assume that
AB ̸= AC, which implies that points A, B, C, M , D, P , I, Q and IA are pairwise distinct.

From Power of a point in D we see that

DP ·DQ
Ω
= DB ·DC

ω
= DI ·DIA

so IA lies on Γ.
Let B′ be the reflection of B over line AI. Note that B′ lies on ω since the circumcenter M of ω

lies on line AI. Moreover, B′ lies on the circumcircle of triangle CMD, since

∠DMC = ∠AMC = ∠ABC = ∠ABD = ∠DB′A = ∠DB′C.

Thus, Power of a point in A gives

AD ·AM
(CMD)
= AC ·AB′ ω

= AI ·AIA.

Since line AO is the reflection of line AI in the height from vertex A in triangle ABC, we have
that AO ⊥ PQ. Together with OP = OQ, we get that AO is the perpendicular bisector of the
segment PQ, so that AP = AQ.

Now
∠DMP = ∠AMP = ∠AQP = ∠QPA = ∠DPA

which implies that line AP is tangent to the circumcircle of triangle DMP because of the tangent-
secant theorem. Thus, from Power of a point in A we get that

AP 2 (DMP )
= AD ·AM = AI ·AIA

which implies that line AP is tangent to Γ. Similarly, we have that AQ is tangent to Γ. Hence A,
P , O′ and Q must lie on a circle, namely circle Ω, which was what we wanted to show.

A

B

C

I

D

P

Q

M

IA

O

O′

B′

E
F
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Solution 2. Let Ω denote the circumcircle of triangle ABC and let σ denote its incircle.
By symmetry, the segment PQ is tangent to σ. Moreover, by Poncelet’s Porism, there exists a

point R on Ω such that σ is the incircle of triangle PQR.
Thus, I is the incenter of triangle PQR, so the circumcenter of triangle PIQ must lie on the

circumcircle of triangle PQR, which is just Ω.

Solution 3. Let Ω = Ω1, Ω2 and Ω3 denote the circumcircles of triangles ABC, BIC and PIQ,
respectively, and let O1, O2 and O3 denote their respective circumcenters.

Notice that O2 lies on Ω1.
By the Radical Axis Theorem on Ω1, Ω2 and Ω3, we have that the line IO2 must be the radical axis

of circles Ω2 and Ω3. Thus, line O2O3 is perpendicular to line IO2, which implies that ∠AO2O3 = π
2 .

Lastly, since line AO1 is the reflection of the height from A to BC over line AI, we get that A
lies on the perpendicular bisector of segment PQ. Thus, points A, O1 and O3 must be collinear.

Hence, point O3 must be the antipodal point of A on Ω1. I.e. the circumcenter of triangle PIQ
lies on Ω, as desired.
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Problem 12. Determine all real numbers θ for which there exists an infinite sequence (xn)
∞
n=1 of

positive reals satisfying

xn−1 = xn · nxn and
x1

nθ
≥ xn

for all positive integers n > 1.

Solution. We claim that there exists an infinite sequence (xn)
∞
n=1 of positive reals which satisfies

the given conditions if and only if θ ≤ 1.
Let (⋆) denote the equation xn−1 = xn · nxn and let (†) denote the inequality x1

nθ ≥ xn.

Lemma 1. If θ > 1 there exists no sequences (xn)
∞
n=1 of positive reals satisfying (⋆) and (†).

Proof of Lemma 1. Suppose that there existed some real θ > 1 and an infinite sequence (xn)
∞
n=1 of

positive reals satisfying (⋆) and (†). Thus, for all positive integers n > 1 we have that

nθ
(†)
≤ x1

xn
=

n∏
k=2

xk−1

xk

(⋆)
=

n∏
k=2

kxk
(†)
≤

n∏
k=2

kx1k
−θ

.

Taking the logarithm of both sides yields

θ log(n) ≤ x1

n∑
k=2

log(k)

kθ
.

Notice that

lim
n→∞

x1

n∑
k=2

log(k)

kθ
< ∞

since log(k)
kθ ≤ k−

θ+1
2 for all sufficiently large k (and − θ+1

2 < −1).
However, we also have that

lim
n→∞

θ log(n) = ∞

which yields a contradiction.
Thus, there are no sequences (xn)

∞
n=1 of positive reals satisfying (⋆) and (†) for θ > 1.

Lemma 2. For all θ ≤ 1 there exists sequences (xn)
∞
n=1 of positive reals satisfying (⋆) and (†).

Proof of Lemma 2. We claim that there exists a sequence (xn)n=1∞ of positive reals such that

xn−1 = xn · nxn och x1 ≥ nxn

for all positive integers n > 1.
Notice that the equation y = x · nx always has a positive solution for x for any y ∈ R+ and

n ∈ N. Therefore there exists a sequence (xn) satisfying (⋆) for which

x1 ≥ max
n≥2

{
n logn

(
n

n− 1

)}
.

[The right-hand side above is finite since

n logn

(
n

n− 1

)
=

log
((

1 + 1
n−1

)n)
log(n)

≤ log

((
1 +

1

n− 1

)2(n−1)
)

< 3

for all sufficiently large n.]
Suppose that this sequence does not satisfy that x1 ≥ nxn for all n ∈ N. Then there exists a

minimal N ∈ N for which x1 < NxN . (Notice that we necessarily have N ≥ 2). Thus we have that

x1

N − 1
≥ xN−1

(⋆)
= xN ·NxN >

x1

N
·N

x1
N

∴ N logN

(
N

N − 1

)
> x1

which contradicts our choice of x1.
Hence, the constructed sequence (xn)

∞
n=1 satisfies both (⋆) and x1 ≥ nxn (and therefore also (†),

since θ ≤ 1) for all positive integers n > 1, which was what we wanted to show.

We conclude that there exists infinite sequences (xn)
∞
n=1 of positive reals satisfying (⋆) and (†)

for all positive integers n > 1 if and only if θ ≤ 1.
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Problem 13. Emil has n stones whose weights are 1, 2, . . . , n kilograms. Yesterday he attached a
label to each stone showing its weight, but he is worried that his friend Ivar played a prank and
swapped the labels during the night. Emil wants to determine whether the labels are correct or not
by performing a number of weighings on his balance scale. After each weighing he is told which pan
is heavier, or that both weigh the same. Can you come up with some weighings Emil can perform
that are guaranteed to expose Ivar if he moved the labels?
You receive more points the fewer weighings your solution uses for large n!

Solution. As the problem description suggests, this is a fairly open-ended problem with multiple
possible solutions. Here we present a very efficient method that requires only

2⌈log2(n)⌉+ 1

weighings. We say that a stone is “determined” if Emil knows that the label on it is correct.
Start by weighing 1+ 2 against 3, then 1+ 2+ 3 against 6, then 1+ 2+ 3+ 6 against 12, and so

on. At each step, weigh all stones used so far against the stone that should weigh as much as their
total. This way, the number on the stone on the right pan doubles in each step until the sum of all
previously weighed stones exceeds n. The number on the last stone weighed will be 3 ·2⌊log2(n/3)⌋. All
labels on stones weighed so far — let’s call this set X — can now be combined to form any integer
weight between 1 and 6 · 2⌊log2(n/3)⌋ (think of binary numbers, multiplied by three). In particular, if
we haven’t weighed stone n, we can pick stones from X whose labeled weights sum to n and weigh
them against the stone labeled n, and we do just that. In total, we have now used at most⌊

log(
n

3
)
⌋
+ 2

weighings. If any of the weighings result in the two pans being unequal, Emil immediately knows
that some labels have been swapped. The same logic holds throughout, so from now on we assume
every weighing gives the expected result. If stones 1 and 2 are correctly labeled, then every other
stone weighed so far (i.e., all of X and the one labeled n) must also be correct. If 1 and 2 are
mislabeled, they must either have been swapped with each other or their combined weight is more
than 3, which would make the total weight of all weighed stones exceed the labeled values — which
is impossible. However, we still need to ensure that stones 1 and 2 aren’t just swapped, which can
easily be verified in a single weighing. So now we have determined the correct labels of all stones in
X and the stone labeled n.

Let Y be the set of stones that are still undetermined. We now show how to determine the identity
of each of these in ⌈log2(n)⌉ steps. We use the fact that an integer ≤ n is uniquely determined by its
first ⌈log2(n)⌉ binary digits. For each integer k ≤ ⌈log2(n)⌉, let Lk and Uk denote the set of stones
in Y whose k-th binary digit is 0 and 1, respectively. The rest of the algorithm is best described in
pseudocode:

for k = 1, . . . , ⌈log2 n⌉: do
if sum(Lk) < sum(Uk): then

Place all stones in Lk beside pan 1 (Don’t put them on there just yet)
while total weight beside pan 1 > pan 2: do

Put a stone from Uk beside pan 2, starting with the one with the highest label.
end while
Let D be how much more the stones besides pan 2 will weigh than those beside pan 1 if all

labels are correct. Note: D < n.
Pick stones from X with total weight D and put them beside pan 1.
Perform the weighing!

else
Place all stones in Uk beside pan 1 (Don’t put them on the pan just yet)
while total weight beside pan 2 > pan 1: do

Put a stone from Lk beside pan 1, starting with the one with the highest label.
end while
Let D be how much more the stones besides pan 1 will weigh than those beside pan 2 if all

labels are correct. Note: D < n.
Pick stones from X with total weight D and put them beside pan 2.
Perform the weighing!

end if
end for
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Claim: After k iterations of the algorithm, Emil has determined the first k binary digits of every
stone’s weight.

Proof of claim: By induction. Assume that after k − 1 iterations, Emil knows the first k − 1
binary digits of each stone’s weight. Then in iteration k, pan 1 is as light as possible if the stones
on it are correctly labeled, and pan 2 is as heavy as possible if the stones on it are correctly labled.
Thus, if the set of stones in each pan is not as the lables suggest, then pan 1 would weigh more than
pan 2.

If both pans weigh equally — which should happen if the labels are correct — then Emil knows
which stones are in each pan. In Case 1, this means he knows exactly which are in Lk; in Case 2,
he knows exactly which are in Uk. In either case, Emil now knows which stones in Y have a 0 and
which have a 1 in their k-th binary digit, proving the claim.

After k iterations, Emil knows the first k binary digits of each weight, and thus can verify whether
the labels are correct. The total number of weighings used is:

⌈log2(
n

3
)⌉+ 2 + ⌈log2(n)⌉

≤⌈2 log2(n)⌉+ 1.

This is not an optimal solution but it is impossible to solve the problem using fewer than ⌈log3(n)⌉
weighings. The reason is that each weighing can divide the stones into at most three groups: those on
pan 1, those on pan 2, and those not weighed. To ensure that no two labels are swapped, every pair
of stones must appear in different groups in at least one weighing, which requires at least ⌈log3(n)⌉
weighings.
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