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High School Competition on May 15th 2025
Solutions

Problem 1. Sofia has a balance scale and nine weights weighing 10, 20, 40, 80, 160, 320, 640, 1280,
and 1410 grams, respectively. How can she balance these weights on the scale without any left over?
(Only an answer is required.)

Pan1 1410g, 320 g, 160 g, 80 g, 10 g
Pan 2 1280 g, 640¢g,40¢g,20 g

One can come up with this solution for example by placing the weights on the scale form largest
to smallest, always placing the next weight on the lightest side.

Solution.



Problem 2. Cecilia pours three litres of water into a rectangular glass container with a lid. When
she places it on a table, the water level becomes 8 cm, 4 cm or 15 cm depending on how she rotates
it. What is the volume of the container?

15 cm
8 cm

]4 cm

Solution. Let the rectangular glass container have dimensions a cm x b cm X ¢ cm.
Since the volume of the water in the container is 3 L = 3000 cm?, we have that

8ab = 3000
4bc = 3000
15¢ca = 3000

Multiplying all three of these equations together gives
8ab - 4bc - 15ca = 3000°
= 25.3.5- (abc)* =27 -3 .5°
= (abc)* = 2*.3%.5%
= abc =273 5% = 7500

so the volume of the container is ¢ cm X b cm X ¢ cm = 7500 cm?® = 7.5 L.



Problem 3. A palindromic number is a number that reads the same backwards as forwards, for
example 494. If you multiply together all three—digit palindromic numbers, how many zeros does the
product end with?

Solution. The number of zeros at the end of the product is equal to the number of times 10 divides
the product. Note that 10 =5 - 2, so we need to find how many times 5 and 2 divide the product.

Note that the palindromes of the form 5X5, where 0 < X < 9, are the only three-digit palindromic
numbers divisible by 5. For X # 2,7, these palindromes are divisible by 5 exactly once, and for
X = 2,7, they are divisible by 5 exactly twice. Therefore, the product of all three-digit palindromic
numbers is divisible by 5 twelve times.

Note that the product of all three-digit palindromic numbers is divisible by 2 at least twelve
times, since all palindromes of the forms 2X2 and 4X4, where 0 < X < 9, are each divisible by 2 at
least once.

Therefore, the product of all three-digit palindromic numbers ends with exactly

Answer twelve zeros.



Problem 4. Theodor makes a triangle by halving a 1dm x 1dm square sheet of paper along the
diagonal. He then folds corner A to the point A’ so that the crease M N is formed (where M and
N lie on AB and AC, respectively) and so that A’N is perpendicular to BC. In what ratio does A’
divide the segment BC?

B N c

Solution. The length of AN does not change during the folding, so we have

N
AN = A'N =5in(45°) - NC = V2 -CN «— Z—N:ﬁ.
By the intercept theorem (transversal theorem), it follows that
cA” CN
s~ ay - V2

Answer: A’ divides the segment BC into parts BA’ and C A’ in the ratio 1 : v/2.



Problem 5. A frog is at the point (0,0) in the plane and starts jumping. Its first jump has length
1, and each subsequent jump is twice as long as the previous one. Every jump is made parallel to
one of the coordinate axes. Which points can the frog reach by jumping in this way?

Solution. Notice that the frog is only able to reach points whose integer coordinates (x,y) satisfy
that = + y is odd. We claim that the frog can reach all of these points.

Lemma 1. Let n € N. The frog can jump to all points (x,y) with integer coordinates such that
x +yis odd and |z| + |y| < 2" — 1 in exactly n jumps.

Proof of Lemma 1. We will prove the lemma by induction on n.
Base case (n = 1): On its first jump, the frog can jump to (1,0), (0,1), (—=1,0) or (0, —1), which
encompasses all points (z,y) with integer coordinates such that z + y is odd and |z| + |y| < 2! — 1.
Induction step (n > 1): Notice that the frog can jump to all points (z’,y’) with integer coordi-

nates such that 2’ + % is odd and |z'| + |y/| < 2"~ ! — 1 using exactly n — 1 jumps. Consider a point
(z,y) with integer coefficients such that = + y is odd and |z| + |y| < 2™ — 1. We have x # y since
x+y is odd. By symmetry, we can assume that x > y > 0. The point (z —2"~!,y) is then odd since
n > 1 and we have

2> 2 s p— 2y = — 2y <2 12l =9n-l
r<2" =z —2" Y4 |yl=2""t—pt+y=2""1—(z—y)<2n 1 -1

By the induction hypothesis, the frog can reach (z — 2"~ y) after exactly n — 1 moves and can thus
reach (x,y) after exatcly n jumps (the n:th jump is of length 27~1). Thus, we have shown that the
frog can jump to all points (z, y) with integer coordinates such that z+y is odd and |z|+|y| < 2" —1
using exactly n jumps, which implies the induction step. O

Therefore the set of points to which the frog can jump to is exactly the set of points (x,y) with
integer coordinates such that x + y is odd.



Problem 6. In a trivia game, the board looks like in the figure below. Three players, A, B, and C
start in three different corners of the board. In each round they then take one step along an arrow.
They are only allowed to move in the direction the arrow points. In the end all players have taken
20 steps. Prove that all players finish on different squares.

A

B Cc

Solution. The squares can be coloured red, blue, and green as in the figure below:

A

B C

Each move, one must go from blue to red, from red to green, or from green to blue. All players
start at different coloured squares and will thus continue to be at different coloured squares after
every player has made a move. After each palyer has made 20 moves, the players will still be at
different coloured squares, and thus they are all at different squares after 20 moves.



Problem 7. The Fibonacci numbers 1,1,2,3,5,8,13,21,... are the sequence obtained by starting
with two ones and then computing each subsequent term by adding the two previous terms.

(a) Write the integers 1,2,3,...,20,21 in a circle in some order such that the difference between
two adjacent numbers is always either 8 or 13.

(b) Let a, b and n be three consecutive Fibonacci numbers. Prove that it is possible to write the
numbers 1,2, ..., n in a circle so that the difference between two adjacent numbers is always
either a or b.

Solution. (a)

(b) (Solution 1) We use induction.
Induction hypothesis Suppose that the for consecutive Fibonacci numbers a, b, n, the numbers

1,...,n can be placed in a circle such that the difference between any two adjacent numbers is either
a or b. Base case: For a = 1,b = 1,n = 2, the statement is clearly true.
Induction step The next Fibonacci number after n is n + b. We write the numbers 1,...,n along

a circle in accordance with the induction hypothesis. We now notice that

e Forall k =1,...,a, k—b < 1and k —a < 1. Thus, k£ must have k + a and k + b as its
neighbours.

e Forallk=a+1,...,b, k—b<1and k+b > n. Thus kK must have £k — a and k + a as its
neighboors.

e Forall k =1,....n, k+a > n and kK + b > n. Thus k£ must have k — a and k — b as its
neighbours.

All numbers k£ = 1,...,b must therefore have k + a as a neighbour. If we for all such k£ write the
number k 4+ n between k and k 4 a we will now have every number between 1 and b+ n on the circle
exactly once. Furthermore, every difference between adjacent numbers is now b or n. This new circle
satisfies the induction hypothesis for the next three consecutive Fibonacci numbers: b, n, b+ n. Thus
the induction step is done.

(b) (Solution 2) It is well known that consecutive Fibonacci numbers are coprime. Let a,b,n be
consecutive Fibonacci numbers. Write the numbers in the order sq,...,s, where s; = 1+ (ib % n)
and %n denotes the remainder after division by n. Since b and n are coprime, the s; are a permutation
of 1,...,n. Looking at the differences (mod n) we find

Spt1 — sk =(k+1)b—kb=0b (modn).

Since all differences have absolute value less than n, the only two possible differences between
adjacent numbers si41, Sk are b and —a, which is what we wanted to prove.



Problem 8. The number n = 10° + 7 is a prime. The numbers 1,2,3,...,n are placed on a circle
in that order (so 1 is adjacent to n). A straight line is drawn that separates the numbers into two
groups. Both groups have the same sum. Show that there is only one possible such division and find
it.

Solution. For two adjacent numbers on the circle, their difference is 1 except for 1 and n. There
will therefore be one side of the line which contatains a set of consecutive numbers. if we let a and b
denote the smallest and the largest number on that side of the line, the sum of the numbers on the
same side as a and b is

1
a+a+1+a+2+~--+b—1+b:§(a+b)(b—a+1) (1)
(the sum of an arithmetic progression is the mean value times the number of terms) If both sides

of the line should have the same sum, (1) must be half the sum of all numbers on the circle. This
means that

S@D)b—at )= (1424 +n)
< 2(a+b)b—a+1)=n(n+1) (2)

where we once again used the formula for the sum of an arithmetic progression. We see that n
must divide 2(a+b)(b—a+ 1) and since n is a prime greater than 2, n must divide a+b or b—a+ 1.
For b — a + 1 to be divisible by n, we would need to have a = 1,b = n which obviously does not
work (all number would be on the same side of the line). Thus n must divide a+b. Since a and b
are at most n, a + b can only be equal to n or 2n. The second case is impossible since this would
imply that a = b = n, and then one side of the line would only contain the number n, and have way
smaller sum than the side with all the other numbers. We can therefore conclude that a + b = n.
Substituting this into 2 yields

2b—a+1)=n+1
<— 2(n—a)—a+1)=n+1
= 4da=2(n+1)—(n+1)
n+1

4

< a=

which gives us
n+1 3n-1

4 4
If we substitute these values of a and b into 1, we indeed get

b=n-—

1 13n—-1 n+1 3n—1 n+1
§(a+b)(bfa+1)—§( T T2 )( 1 +1)
1 4n  2n+ 2
= S(CHES)
_n(n+1)
4

as desired.

Answer: The only possible way to draw a line that divides the numbers into two sets with equal
sum is to have all numbers from a = "TH =25-108+2uptob= ?’TT_I =7.5-10° 4+ 5 on one side
of the line and the remaining numbers on the other side of the line.



Problem 9. Five points A, B, C, D and F lie on a circle in that order such that |BA| = |BC|,
|DA| = |DE| and |BD| = |CE|. Prove that ZBAD = 60°.

Solution. We may without loss of generality assume that the circle has radius 1, and that the points
A, B, C, D and F lie in counter-clockwise order around the circle.

Let x be the length of the arc from A to B on the circle in counter-clockwise direction, y be the
length of the arc from B to C on the circle in counter-clockwise direction, z be the length of the arc
from C to D on the circle in counter-clockwise direction, w be the length of the arc from D to E on
the circle in counter-clockwise direction and ¢ be the length of the arc from E to A on the circle in
counter-clockwise direction.

Notice that

r+y+z+w+t=2m

and 0 < x,y, z,w,t < 2m.
Since |BA| = |BC|, we have that

r=y
r=x+z+w-+t
LT =Y.

Since |DA| = |DE)|, we have that

rt+ytz=w
rTH+y+z=t+rz+y+=z

Lrtytz=w.

Since |[BD| = |CE|, we have that

ytz=t+z+y
yt+tz=z+w

and because z + w =z + (x + y + 2z) > y + 2z we must have that
y+z=t+z+y.
From the inscribed angle theorem we have that

y+z

ZBAD = 5

Finally, notice that

2r=(z+y+t)+ (z+w)
=@Wy+2)+(z+@+y+2)
=y+2)+(Ez+y+y+=2)

=3(y+2)
'y+z_7r
2 3
. /ZBAD = 60°

as desired.



Problem 10. Let n be a positive integer. Alice receives a bag containing n distinct positive integers
and writes on a board all possible numbers of the form zy + z, where 2z, y and z are (not necessarily
distinct) numbers from the bag. Given n, determine the minimum number of distinct numbers that
Alice must have written on the board, regardless of which numbers were in the bag.

Solution. For a set S of n positive integers, let
T(S)={zy+z|x,y,z€ S5}

We claim that the smallest possible size of T(S) is n? +n — 1.
Lemma 1. If S = {1,...,n} then |T(S)| =n? +n — 1.

Proof of Lemma 1. If S = {1,...,n} then it is clear that T(S) = {2,...,n% +n}. Thus we have that
|T(S)| = n? +n — 1, which was what we wanted to prove. O

Lemma 2. For all sets S of n positive integers it holds that |T(S)| > n? +n — 1.

Proof of Lemma 2. Let e be the smallest element of S and let E be the largest element of s.
We claim that all numbers of the forms

(i) 2E + z, where z,z € S, and
(ii) €? + 2, where z € S\{E}
are pairwise distinct. This claim can be shown by considering the following cases:

o If 11 F+ 2z = 2o F + z5 we get that z; = zo by considering the equation modulo E. Thereafter
we immediately get that (x1,21) = (z2, 22).

o If €2 + 2; = €2 + 2z, we must have that z; = 2.
e Notice that €2 + 2y < e’ + E<eE+e<azE+z forall v,z € S, 21 € S\{E}.

Since there are n? numbers of the form (i) and and n — 1 numbers of the form (ii) in 7'(9), it

follows that |T'(S)| > n? +n — 1 for all sets S of n positive integers. O

Therefore the minimum number of distinct numbers that Alice may have written on the board
is equal to n? +n — 1.
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Problem 11. Emil has n stones whose weights are 1,2,...,n kilograms. Yesterday he attached a
label to each stone showing its weight, but he is worried that his friend Ivar played a prank and
swapped the labels during the night. Emil wants to determine whether the labels are correct or not
by performing a number of weighings on his balance scale. After each weighing he is told which pan
is heavier, or that both weigh the same. Can you come up with some weighings Emil can perform
that are guaranteed to expose Ivar if he moved the labels?

You receive more points the fewer weighings your solution uses for large n!

Solution. As the problem description suggests, this is a fairly open-ended problem with multiple
possible solutions. Here we present a very efficient method that requires only

2[logy(n)] + 1

weighings. We say that a stone is “determined” if Emil knows that the label on it is correct.

Start by weighing 1+ 2 against 3, then 1+ 2 + 3 against 6, then 14 2+ 3 + 6 against 12, and so
on. At each step, weigh all stones used so far against the stone that should weigh as much as their
total. This way, the number on the stone on the right pan doubles in each step until the sum of all
previously weighed stones exceeds n. The number on the last stone weighed will be 3-2Llog2(7/3)] /A1l
labels on stones weighed so far — let’s call this set X — can now be combined to form any integer
weight between 1 and 6 - 21'°22(*/3)) (think of binary numbers, multiplied by three). In particular,
if we haven’t weighed we can pick some stones from X whose labeled weights sum to n and weigh
them against the stone labeled n, and we do just that. In total, we have now used at most

Llog(ﬁ)J +2

3

weighings. If any of the weighings result in the two pans being unequal, Emil immediately knows
that some labels have been swapped. The same logic holds throughout, so from now on we assume
every weighing gives the expected result. If stones 1 and 2 are correctly labeled, then every other
stone weighed so far (i.e., all of X and the one labeled n) must also be correct. If 1 and 2 are
mislabeled, they must either have been swapped with each other or their combined weight is more
than 3, which would make the total weight of all weighed stones exceed the labeled values — which
is impossible. However, we still need to ensure that stones 1 and 2 aren’t just swapped, which can
easily be verified in a single weighing. So now we have determined the correct labels of all stones in
X and the stone labeled n.

Let Y be the set of stones that are still undetermined. We now show how to determine the
identity of each of these in [logy(n)] steps. We use the fact that an integer is uniquely determined
by its first [log,(n)] binary digits. For each integer k < [logy(n)], let Ly and Uy denote the set
of stones in Y whose k-th binary digit is O and 1, respectively. The rest of the algorithm is best
described in pseudocode:

for k=1,...,[logsn]: do
if sum(Ly) < sum(Uy): then
Place all stones in Ly, beside pan 1 (Don’t put them on there just yet)
while total weight beside pan 1 > pan 2: do
Put a stone from Uy beside pan 2, starting with the one with the highest label.
end while
Let D be how much more the stones besides pan 2 will weigh than those beside pan 1 if all
labels are correct. Note: D < n.
Pick stones from X with total weight D and put them beside pan 1.
Perform the weighing!
else
Place all stones in Uy, beside pan 1 (Don’t put them on the pan just yet)
while total weight beside pan 2 > pan 1: do
Put a stone from Lj beside pan 1, starting with the one with the highest label.
end while
Let D be how much more the stones besides pan 1 will weigh than those beside pan 2 if all
labels are correct. Note: D < n.
Pick stones from X with total weight D and put them beside pan 2.
Perform the weighing!
end if
end for
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Claim: After k iterations of the algorithm, Emil has determined the first & binary digits of every
stone’s weight.

Proof of claim: By induction. Assume that after £ — 1 iterations, Emil knows the first £k — 1
binary digits of each stone’s weight. Then in iteration k, pan 1 is as light as possible if the stones
on it are correctly labeled, and pan 2 is as heavy as possible if the stones on it are correctly labled.
Thus, if the set of stones in each pan is not as the lables suggest, then pan 1 would weigh more than
pan 2.

If both pans weigh equally — which should happen if the labels are correct — then Emil knows
which stones are in each pan. In Case 1, this means he knows exactly which are in Lg; in Case 2,
he knows exactly which are in Uy. In either case, Emil now knows which stones in Y have a 0 and
which have a 1 in their k-th binary digit, proving the claim. O

After k iterations, Emil knows the first k£ binary digits of each weight, and thus can verify whether
the labels are correct. The total number of weighings used is:

lloga ()] +2 + logy (n)]
<[2log,(n)] + 1.

This is not an optimal solution but it is impossible to solve the problem using fewer than [logs(n)]
weighings. The reason is that each weighing can divide the stones into at most three groups: those on
pan 1, those on pan 2, and those not weighed. To ensure that no two labels are swapped, every pair
of stones must appear in different groups in at least one weighing, which requires at least [logs(n)]
weighings.
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